Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Clin Microbiol Rev ; 37(2): e0013923, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436564

RESUMO

SUMMARYThe World Health Organisation's 2022 AWaRe Book provides guidance for the use of 39 antibiotics to treat 35 infections in primary healthcare and hospital facilities. We review the evidence underpinning suggested dosing regimens. Few (n = 18) population pharmacokinetic studies exist for key oral AWaRe antibiotics, largely conducted in homogenous and unrepresentative populations hindering robust estimates of drug exposures. Databases of minimum inhibitory concentration distributions are limited, especially for community pathogen-antibiotic combinations. Minimum inhibitory concentration data sources are not routinely reported and lack regional diversity and community representation. Of studies defining a pharmacodynamic target for ß-lactams (n = 80), 42 (52.5%) differed from traditionally accepted 30%-50% time above minimum inhibitory concentration targets. Heterogeneity in model systems and pharmacodynamic endpoints is common, and models generally use intravenous ß-lactams. One-size-fits-all pharmacodynamic targets are used for regimen planning despite complexity in drug-pathogen-disease combinations. We present solutions to enable the development of global evidence-based antibiotic dosing guidance that provides adequate treatment in the context of the increasing prevalence of antimicrobial resistance and, moreover, minimizes the emergence of resistance.


Assuntos
Antibacterianos , Organização Mundial da Saúde , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Medicamentos Essenciais/administração & dosagem , Medicamentos Essenciais/farmacocinética , Saúde Global
2.
Lancet ; 403(10442): 2426-2438, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797176

RESUMO

Each year, an estimated 7·7 million deaths are attributed to bacterial infections, of which 4.95 million are associated with drug-resistant pathogens, and 1·27 million are caused by bacterial pathogens resistant to the antibiotics available. Access to effective antibiotics when indicated prolongs life, reduces disability, reduces health-care expenses, and enables access to other life-saving medical innovations. Antimicrobial resistance undoes these benefits and is a major barrier to attainment of the Sustainable Development Goals, including targets for newborn survival, progress on healthy ageing, and alleviation of poverty. Adverse consequences from antimicrobial resistance are seen across the human life course in both health-care-associated and community-associated infections, as well as in animals and the food chain. The small set of effective antibiotics has narrowed, especially in resource-poor settings, and people who are very young, very old, and severely ill are particularly susceptible to resistant infections. This paper, the first in a Series on the challenge of antimicrobial resistance, considers the global scope of the problem and how it should be measured. Robust and actionable data are needed to drive changes and inform effective interventions to contain resistance. Surveillance must cover all geographical regions, minimise biases towards hospital-derived data, and include non-human niches.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana , Saúde Global , Animais
3.
Lancet ; 403(10443): 2551-2564, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38797179

RESUMO

Rising antimicrobial resistance (AMR) is a global health crisis for countries of all economic levels, alongside the broader challenge of access to antibiotics. As a result, development goals for child survival, healthy ageing, poverty reduction, and food security are at risk. Preserving antimicrobial effectiveness, a global public good, requires political will, targets, accountability frameworks, and funding. The upcoming second high-level meeting on AMR at the UN General Assembly (UNGA) in September, 2024, is evidence of political interest in addressing the problem of AMR, but action on targets, accountability, and funding, absent from the 2016 UNGA resolution, is needed. We propose ambitious yet achievable global targets for 2030 (relative to a prepandemic 2019 baseline): a 10% reduction in mortality from AMR; a 20% reduction in inappropriate human antibiotic use; and a 30% reduction in inappropriate animal antibiotic use. Given national variation in current levels of antibiotic use, these goals (termed the 10-20-30 by 2030) should be met within a framework of universal access to effective antibiotics. The WHO Access, Watch, Reserve (AWARE) system can be used to define, monitor, and evaluate appropriate levels of antibiotic use and access. Some countries should increase access to narrow-spectrum, safe, and affordable (Access) antibiotics, whereas others should discourage the inappropriate use of broader-spectrum (Watch) and last-resort (Reserve) antibiotics; AWARE targets should use a risk-based, burden-adjusted approach. Improved infection prevention and control, access to clean water and sanitation, and vaccination coverage can offset the selection effects of increased antibiotic use in low-income settings. To ensure accountability and global scientific guidance and consensus, we call for the establishment of the Independent Panel on Antimicrobial Access and Resistance and the support of leaders from low-income and middle-income countries.


Assuntos
Antibacterianos , Saúde Global , Nações Unidas , Humanos , Antibacterianos/uso terapêutico , Acessibilidade aos Serviços de Saúde , Resistência Microbiana a Medicamentos
4.
J Antimicrob Chemother ; 79(6): 1234-1247, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507232

RESUMO

OBJECTIVES: To identify and assess the effectiveness of national antibiotic optimization interventions in primary and secondary care in England (2013-2022). METHODS: A systematic scoping review was conducted. Literature databases (Embase and Medline) were used to identify interventions and evaluations. Reports included the UK AMR Strategy (2013-2018), National Action Plan (2019-2024) and English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) reports (2014-2022). The design, focus and quality of evaluations and the interventions' effectiveness were extracted. FINDINGS: Four hundred and seventy-seven peer-reviewed studies and 13 reports were screened. One hundred and three studies were included for review, identifying 109 interventions in eight categories: policy and commissioning (n = 9); classifications (n = 1); guidance and toolkits (n = 22); monitoring and feedback (n = 17); professional engagement and training (n = 19); prescriber tools (n = 12); public awareness (n = 17); workforce and governance (n = 12).Most interventions lack high-quality effectiveness evidence. Evaluations mainly focused on clinical, microbiological or antibiotic use outcomes, or intervention implementation, often assessing how interventions were perceived to affect behaviour. Only 16 interventions had studies that quantified effects on prescribing, of which six reported reductions. The largest reduction was reported with structural-level interventions and attributed to a policy and commissioning intervention (primary care financial incentives). Behavioural interventions (guidance and toolkits) reported the greatest impact in hospitals. CONCLUSIONS: Many interventions have targeted antibiotic use, each pulling different levers across the health system simultaneously. On the basis of these studies, structural-level interventions may have the greatest impact. Collectively, the combination of interventions may explain England's decline in prescribing but direct evidence of causality is unavailable.


Assuntos
Antibacterianos , Gestão de Antimicrobianos , Política de Saúde , Inglaterra , Humanos , Antibacterianos/uso terapêutico , Atenção Primária à Saúde , Atenção Secundária à Saúde , Uso de Medicamentos/normas , Uso de Medicamentos/estatística & dados numéricos
5.
J Pediatr ; 268: 113934, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309519

RESUMO

OBJECTIVE: The objective of this study was to determine if valganciclovir initiated after 1 month of age improves congenital cytomegalovirus-associated sensorineural hearing loss. STUDY DESIGN: We conducted a randomized, double-blind, placebo-controlled phase 2 trial of 6 weeks of oral valganciclovir at US (n = 12) and UK (n = 9) sites. Patients of ages 1 month through 3 years with baseline sensorineural hearing loss were enrolled. The primary outcome was change in total ear hearing between baseline and study month 6. Secondary outcome measures included change in best ear hearing and reduction in cytomegalovirus viral load in blood, saliva, and urine. RESULTS: Of 54 participants enrolled, 35 were documented to have congenital cytomegalovirus infection and were randomized (active group: 17; placebo group: 18). Mean age at enrollment was 17.8 ± 15.8 months (valganciclovir) vs 19.5 ± 13.1 months (placebo). Twenty (76.9%) of the 26 ears from subjects in the active treatment group did not have worsening of hearing, compared with 27 (96.4%) of 28 ears from subjects in the placebo group (P = .09). All other comparisons of total ear or best ear hearing outcomes were also not statistically significant. Saliva and urine viral loads decreased significantly in the valganciclovir group but did not correlate with change in hearing outcome. CONCLUSIONS: In this randomized controlled trial, initiation of antiviral therapy beyond the first month of age did not improve hearing outcomes in children with congenital cytomegalovirus-associated sensorineural hearing loss. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01649869.


Assuntos
Antivirais , Infecções por Citomegalovirus , Ganciclovir , Perda Auditiva Neurossensorial , Valganciclovir , Humanos , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/complicações , Valganciclovir/uso terapêutico , Valganciclovir/administração & dosagem , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Neurossensorial/virologia , Perda Auditiva Neurossensorial/etiologia , Antivirais/uso terapêutico , Antivirais/administração & dosagem , Masculino , Feminino , Método Duplo-Cego , Lactente , Administração Oral , Ganciclovir/análogos & derivados , Ganciclovir/uso terapêutico , Ganciclovir/administração & dosagem , Pré-Escolar , Resultado do Tratamento , Carga Viral , Recém-Nascido
6.
PLoS Med ; 20(5): e1004239, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37216371

RESUMO

BACKGROUND: Despite significant global progress in reducing neonatal mortality, bacterial sepsis remains a major cause of neonatal deaths. Klebsiella pneumoniae (K. pneumoniae) is the leading pathogen globally underlying cases of neonatal sepsis and is frequently resistant to antibiotic treatment regimens recommended by the World Health Organization (WHO), including first-line therapy with ampicillin and gentamicin, second-line therapy with amikacin and ceftazidime, and meropenem. Maternal vaccination to prevent neonatal infection could reduce the burden of K. pneumoniae neonatal sepsis in low- and middle-income countries (LMICs), but the potential impact of vaccination remains poorly quantified. We estimated the potential impact of such vaccination on cases and deaths of K. pneumoniae neonatal sepsis and project the global effects of routine immunization of pregnant women with the K. pneumoniae vaccine as antimicrobial resistance (AMR) increases. METHODS AND FINDINGS: We developed a Bayesian mixture-modeling framework to estimate the effects of a hypothetical K. pneumoniae maternal vaccine with 70% efficacy administered with coverage equivalent to that of the maternal tetanus vaccine on neonatal sepsis infections and mortality. To parameterize our model, we used data from 3 global studies of neonatal sepsis and/or mortality-with 2,330 neonates who died with sepsis surveilled from 2016 to 2020 undertaken in 18 mainly LMICs across all WHO regions (Ethiopia, Kenya, Mali, Mozambique, Nigeria, Rwanda, Sierra Leone, South Africa, Uganda, Brazil, Italy, Greece, Pakistan, Bangladesh, India, Thailand, China, and Vietnam). Within these studies, 26.95% of fatal neonatal sepsis cases were culture-positive for K. pneumoniae. We analyzed 9,070 K. pneumoniae genomes from human isolates gathered globally from 2001 to 2020 to quantify the temporal rate of acquisition of AMR genes in K. pneumoniae isolates to predict the future number of drug-resistant cases and deaths that could be averted by vaccination. Resistance rates to carbapenems are increasing most rapidly and 22.43% [95th percentile Bayesian credible interval (CrI): 5.24 to 41.42] of neonatal sepsis deaths are caused by meropenem-resistant K. pneumoniae. Globally, we estimate that maternal vaccination could avert 80,258 [CrI: 18,084 to 189,040] neonatal deaths and 399,015 [CrI: 334,523 to 485,442] neonatal sepsis cases yearly worldwide, accounting for more than 3.40% [CrI: 0.75 to 8.01] of all neonatal deaths. The largest relative benefits are in Africa (Sierra Leone, Mali, Niger) and South-East Asia (Bangladesh) where vaccination could avert over 6% of all neonatal deaths. Nevertheless, our modeling only considers country-level trends in K. pneumoniae neonatal sepsis deaths and is unable to consider within-country variability in bacterial prevalence that may impact the projected burden of sepsis. CONCLUSIONS: A K. pneumoniae maternal vaccine could have widespread, sustained global benefits as AMR in K. pneumoniae continues to increase.


Assuntos
Doenças Transmissíveis , Sepse Neonatal , Morte Perinatal , Sepse , Vacinas , Recém-Nascido , Humanos , Feminino , Gravidez , Sepse Neonatal/epidemiologia , Sepse Neonatal/prevenção & controle , Sepse Neonatal/microbiologia , Klebsiella pneumoniae , Meropeném , Teorema de Bayes , África do Sul
7.
J Antimicrob Chemother ; 78(9): 2148-2161, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531085

RESUMO

BACKGROUND: Pharmacokinetic (PK) data underlying paediatric penicillin dosing remain limited, especially in critical care. OBJECTIVES: The primary objective of the Neonatal and Paediatric Pharmacokinetics of Antimicrobials study (NAPPA) was to characterize PK profiles of commonly used penicillins using data obtained during routine care, to further understanding of PK variability and inform future evidence-based dosing. METHODS: NAPPA was a multicentre study of amoxicillin, co-amoxiclav, benzylpenicillin, flucloxacillin and piperacillin/tazobactam. Patients were recruited with informed consent. Antibiotic dosing followed standard of care. PK samples were obtained opportunistically or at optimal times, frozen and analysed using UPLC with tandem MS. Pharmacometric analysis was undertaken using NONMEM software (v7.3). Model-based simulations (n = 10 000) tested PTA with British National Formulary for Children (BNFC) and WHO dosing. The study had ethical approval. RESULTS: For the combined IV PK model, 963 PK samples from 370 participants were analysed simultaneously incorporating amoxicillin, benzylpenicillin, flucloxacillin and piperacillin data. BNFC high-dose regimen simulations gave these PTA results (median fT>MIC at breakpoints of specified pathogens): amoxicillin 100% (Streptococcus pneumoniae); benzylpenicillin 100% (Group B Streptococcus); flucloxacillin 48% (MSSA); and piperacillin 100% (Pseudomonas aeruginosa). Oral population PK models for flucloxacillin and amoxicillin enabled estimation of first-order absorption rate constants (1.16 h-1 and 1.3 h-1) and bioavailability terms (62.7% and 58.7%, respectively). CONCLUSIONS: NAPPA represents, to our knowledge, the largest prospective combined paediatric penicillin PK study undertaken to date, and the first paediatric flucloxacillin oral PK model. The PTA results provide evidence supportive of BNFC high-dose IV regimens for amoxicillin, benzylpenicillin and piperacillin.


Assuntos
Floxacilina , Piperacilina , Recém-Nascido , Humanos , Criança , Adolescente , Piperacilina/farmacocinética , Amoxicilina , Estudos Prospectivos , Antibacterianos/uso terapêutico , Penicilinas , Testes de Sensibilidade Microbiana
8.
J Antimicrob Chemother ; 77(2): 448-456, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35107141

RESUMO

OBJECTIVES: This study aimed to simultaneously investigate the pharmacokinetics of ampicillin and gentamicin, currently the WHO standard of care for treating neonatal sepsis. METHODS: Pharmacokinetic data were collected in 59 neonates receiving ampicillin and gentamicin for suspected or proven sepsis in the NeoFosfo trial (NCT03453177). A panel of 23 clinical Escherichia coli isolates from neonates with sepsis, resistant to either ampicillin, gentamicin or both, were tested for susceptibility using chequerboards. Pharmacokinetic/pharmacodynamic (PKPD) modelling and simulations were used to compare single-agent (EUCAST MIC) and combination (chequerboard MIC) target attainment with standard dosing regimens. RESULTS: A model was established that simultaneously estimated parameters of a one-compartment ampicillin model and a two-compartment gentamicin model. A common clearance for both drugs was used (6.89 L/h/70 kg) relating to glomerular filtration (CLGFR), with an additional clearance term added for ampicillin (5.3 L/h/70 kg). Covariate modelling included a priori allometric weight and post-menstrual age scaling of clearance. Further covariate relationships on renal clearance were postnatal age and serum creatinine.Simulation-based PKPD assessments suggest good Gram-positive (MIC ≤ 0.25 mg/L) cover. However, less than one-quarter of neonates were predicted to receive efficacious coverage against Enterobacterales (MIC ≤ 2 mg/L). The benefit of the ampicillin/gentamicin combination was limited, with only 2/23 E. coli clinical strains showing FIC index < 0.5 (synergy) and most in the range 0.5-1 (suggesting additivity). Simulations showed that feasible dosing strategies would be insufficient to cover resistant strains. CONCLUSIONS: PKPD simulations showed ampicillin and gentamicin combination therapy was insufficient to cover Enterobacterales, suggesting the need for alternative empirical treatment options for neonatal sepsis.


Assuntos
Sepse Neonatal , Sepse , Ampicilina/farmacologia , Ampicilina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Humanos , Recém-Nascido , Sepse Neonatal/tratamento farmacológico , Sepse/tratamento farmacológico
9.
J Antimicrob Chemother ; 77(5): 1334-1343, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35170719

RESUMO

BACKGROUND: Neonatal sepsis is a serious bacterial infection of neonates, globally killing up to 680 000 babies annually. It is frequently complicated by antimicrobial resistance, particularly in low- and middle-income country (LMIC) settings with widespread resistance to the WHO's recommended empirical regimen of ampicillin and gentamicin. OBJECTIVES: We assessed the utility of flomoxef and fosfomycin as a potential alternative empirical regimen for neonatal sepsis in these settings. METHODS: We studied the combination in a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment and chequerboard assays. We further assessed the combination using clinically relevant regimens in the HFIM with six Enterobacterales strains with a range of flomoxef/fosfomycin MICs. RESULTS: Pharmacokinetic/pharmacodynamic modelling of the HFIM experimental output, along with data from chequerboard assays, indicated synergy of this regimen in terms of bacterial killing and prevention of emergence of fosfomycin resistance. Flomoxef monotherapy was sufficient to kill 3/3 strains with flomoxef MICs ≤0.5 mg/L to sterility. Three of three strains with flomoxef MICs ≥8 mg/L were not killed by fosfomycin or flomoxef monotherapy; 2/3 of these were killed with the combination of the two agents. CONCLUSIONS: These data suggest that flomoxef/fosfomycin could be an efficacious and synergistic regimen for the empirical treatment of neonatal sepsis in LMIC settings with prevalent antimicrobial resistance. Our HFIM results warrant further assessment of the flomoxef/fosfomycin combination in clinical trials.


Assuntos
Fosfomicina , Sepse Neonatal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico
10.
J Antimicrob Chemother ; 77(12): 3349-3357, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36177766

RESUMO

BACKGROUND: Annual mortality from neonatal sepsis is an estimated 430 000-680 000 infants globally, most of which occur in low- and middle-income countries (LMICs). The WHO currently recommends a narrow-spectrum ß-lactam (e.g. ampicillin) and gentamicin as first-line empirical therapy. However, available epidemiological data demonstrate high rates of resistance to both agents. Alternative empirical regimens are needed. Flomoxef and amikacin are two off-patent antibiotics with potential for use in this setting. OBJECTIVES: To assess the pharmacodynamics of flomoxef and amikacin in combination. METHODS: The pharmacodynamic interaction of flomoxef and amikacin was assessed in chequerboard assays and a 16-arm dose-ranged hollow-fibre infection model (HFIM) experiment. The combination was further assessed in HFIM experiments mimicking neonatal plasma exposures of clinically relevant doses of both drugs against five Enterobacterales isolates with a range of flomoxef/amikacin MICs. RESULTS: Flomoxef and amikacin in combination were synergistic in bacterial killing in both assays and prevention of emergence of amikacin resistance in the HFIM. In the HFIM assessing neonatal-like drug exposures, the combination killed 3/5 strains to sterility, (including 2/5 that monotherapy with either drug failed to kill) and failed to kill the 2/5 strains with flomoxef MICs of 32 mg/L. CONCLUSIONS: We conclude that the combination of flomoxef and amikacin is synergistic and is a potentially clinically effective regimen for the empirical treatment of neonatal sepsis in LMIC settings and is therefore suitable for further assessment in a clinical trial.


Assuntos
Amicacina , Sepse Neonatal , Lactente , Recém-Nascido , Humanos , Amicacina/farmacologia , Amicacina/uso terapêutico , Sepse Neonatal/tratamento farmacológico , Cefalosporinas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Atenção à Saúde
11.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233238

RESUMO

Neonatal sepsis is a life-threatening condition with high mortality. Virulence determinants relevant in causing Gram-negative (GN) neonatal sepsis are still poorly characterized. A better understanding of virulence factors (VFs) associated with GN neonatal sepsis could offer new targets for therapeutic interventions. The aim of this review was to assess the role of GN VFs in neonatal sepsis. We primarily aimed to investigate the main VFs leading to adverse outcome and second to evaluate VFs associated with increased invasiveness/pathogenicity in neonates. MEDLINE, Embase, and Cochrane Library were systematically searched for studies reporting data on the role of virulome/VFs in bloodstream infections caused by Enterobacterales among neonates and infants aged 0-90 days. Twenty studies fulfilled the inclusion criteria. Only 4 studies reported data on the association between pathogen virulence determinants and neonatal mortality, whereas 16 studies were included in the secondary analyses. The quality of reporting was suboptimal in the great majority of the published studies. No consistent association between virulence determinants and GN strains causing neonatal sepsis was identified. Considerable heterogeneity was found in terms of VFs analysed and reported, included population and microbiological methods, with the included studies often showing conflicting data. This variability hampered the comparison of the results. In conclusions, pathogens responsible for neonatal sepsis are widely heterogenous and can use different pathways to develop invasive disease. The recent genome-wide approach needs to include multicentre studies with larger sample sizes, analyses of VF gene profiles instead of single VF genes, alongside a comprehensive collection of clinical information. A better understanding of the roles of virulence genes in neonatal GN bacteraemia may offer new vaccine targets and new markers of highly virulent strains. This information can potentially be used for screening and preventive interventions as well as for new targets for anti-virulence antibiotic-sparing therapies.


Assuntos
Bacteriemia , Gammaproteobacteria , Infecções por Bactérias Gram-Negativas , Sepse Neonatal , Sepse , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Sepse/tratamento farmacológico , Fatores de Virulência/genética
12.
Antimicrob Agents Chemother ; 65(7): e0029321, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972238

RESUMO

Antimicrobial resistance (particularly through extended-spectrum ß-lactamase and aminoglycoside-modifying enzyme production) in neonatal sepsis is a global problem, particularly in low- and middle-income countries, with significant mortality rates. High rates of resistance are reported for the current WHO-recommended first-line antibiotic regimen for neonatal sepsis, i.e., ampicillin and gentamicin. We assessed the utility of fosfomycin and amikacin as a potential alternative regimen to be used in settings of increasingly prevalent antimicrobial resistance. The combination was studied in a 16-arm dose-ranged hollow-fiber infection model (HFIM) experiment. The combination of amikacin and fosfomycin enhanced bactericidal activity and prevented the emergence of resistance, compared to monotherapy with either antibiotic. Modeling of the experimental quantitative outputs and data from checkerboard assays indicated synergy. We further assessed the combination regimen at clinically relevant doses in the HFIM with nine Enterobacterales strains with high fosfomycin and amikacin MICs and demonstrated successful kill to sterilization for 6/9 strains. From these data, we propose a novel combination breakpoint threshold for microbiological success for this antimicrobial combination against Enterobacterales strains, i.e., MICF × MICA < 256 (where MICF and MICA are the fosfomycin and amikacin MICs, respectively). Monte Carlo simulations predict that a standard fosfomycin-amikacin neonatal regimen would achieve >99% probability of pharmacodynamic success for strains with MICs below this threshold. We conclude that the combination of fosfomycin with amikacin is a viable regimen for the empirical treatment of neonatal sepsis and is suitable for further clinical assessment in a randomized controlled trial.


Assuntos
Antibacterianos , Fosfomicina , Sepse Neonatal , Amicacina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Sepse Neonatal/tratamento farmacológico
13.
J Antimicrob Chemother ; 76(7): 1855-1864, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33855449

RESUMO

BACKGROUND: Fosfomycin has the potential to be re-purposed as part of a combination therapy to treat neonatal sepsis where resistance to current standard of care (SOC) is common. Limited data exist on neonatal fosfomycin pharmacokinetics and estimates of bioavailability and CSF/plasma ratio in this vulnerable population are lacking. OBJECTIVES: To generate data informing the appropriate dosing of IV and oral fosfomycin in neonates using a population pharmacokinetic analysis of plasma and CSF data. METHODS: The NeoFosfo study (NCT03453177) was a randomized trial that examined the safety and pharmacokinetics of fosfomycin comparing SOC versus SOC plus fosfomycin. Sixty-one neonates received fosfomycin (100 mg/kg IV q12h for 48 h) and then they converted to oral therapy at the same dose. Two plasma pharmacokinetic samples were taken following the first IV and oral doses, sample times were randomized to cover the whole pharmacokinetic profile and opportunistic CSF pharmacokinetic samples were collected. A population pharmacokinetic model was developed in NONMEM and simulations were performed. RESULTS: In total, 238 plasma and 15 CSF concentrations were collected. A two-compartment disposition model, with an additional CSF compartment and first-order absorption, best described the data. Bioavailability was estimated as 0.48 (95% CI = 0.347-0.775) and the CSF/plasma ratio as 0.32 (95% CI = 0.272-0.409). Allometric weight and postmenstrual age (PMA) scaling was applied; additional covariates included postnatal age (PNA) on clearance and CSF protein on CSF/plasma ratio. CONCLUSIONS: Through this analysis a population pharmacokinetic model has been developed that can be used alongside currently available pharmacodynamic targets to select a neonatal fosfomycin dose based on an infant's PMA, PNA and weight.


Assuntos
Doenças Transmissíveis , Fosfomicina , Sepse Neonatal , Antibacterianos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Sepse Neonatal/tratamento farmacológico
14.
Br J Clin Pharmacol ; 87(7): 2996-2999, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368470

RESUMO

High consumption of irrational fixed-dose combination (FDC) antibiotics may pose a threat of antimicrobial resistance. In India, ampicillin-cloxacillin was the second highest sold FDC antibiotic behind amoxicillin and clavulanic acid. There remain, however, questions about its efficacy and safety and a lack of regulatory approval. We undertook a literature review for ampicillin-cloxacillin to identify available data on the safety and efficacy of its used as FDC. We identified 1071 studies for screening and 81 studies were considered for inclusion. Only 12 studies in English language were accessible full texts for final review. None of the studies identified provided strong evidence that ampicillin-cloxacillin differed in safety or efficacy to other treatments used, and in particular to the component antibiotics used alone. To fully assess the efficacy and safety of ampicillin-cloxacillin and other FDCs, a standardised search format would be required. This should include broad international collaboration, including contacting the relevant regulatory authorities to facilitate a more evidence-based approach to their use.


Assuntos
Antibacterianos , Cloxacilina , Amoxicilina , Ampicilina/efeitos adversos , Antibacterianos/efeitos adversos , Ácido Clavulânico , Cloxacilina/efeitos adversos , Humanos
15.
JAMA ; 326(17): 1713-1724, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726708

RESUMO

Importance: The optimal dose and duration of oral amoxicillin for children with community-acquired pneumonia (CAP) are unclear. Objective: To determine whether lower-dose amoxicillin is noninferior to higher dose and whether 3-day treatment is noninferior to 7 days. Design, Setting, and Participants: Multicenter, randomized, 2 × 2 factorial noninferiority trial enrolling 824 children, aged 6 months and older, with clinically diagnosed CAP, treated with amoxicillin on discharge from emergency departments and inpatient wards of 28 hospitals in the UK and 1 in Ireland between February 2017 and April 2019, with last trial visit on May 21, 2019. Interventions: Children were randomized 1:1 to receive oral amoxicillin at a lower dose (35-50 mg/kg/d; n = 410) or higher dose (70-90 mg/kg/d; n = 404), for a shorter duration (3 days; n = 413) or a longer duration (7 days; n = 401). Main Outcomes and Measures: The primary outcome was clinically indicated antibiotic re-treatment for respiratory infection within 28 days after randomization. The noninferiority margin was 8%. Secondary outcomes included severity/duration of 9 parent-reported CAP symptoms, 3 antibiotic-related adverse events, and phenotypic resistance in colonizing Streptococcus pneumoniae isolates. Results: Of 824 participants randomized into 1 of the 4 groups, 814 received at least 1 dose of trial medication (median [IQR] age, 2.5 years [1.6-2.7]; 421 [52%] males and 393 [48%] females), and the primary outcome was available for 789 (97%). For lower vs higher dose, the primary outcome occurred in 12.6% with lower dose vs 12.4% with higher dose (difference, 0.2% [1-sided 95% CI -∞ to 4.0%]), and in 12.5% with 3-day treatment vs 12.5% with 7-day treatment (difference, 0.1% [1-sided 95% CI -∞ to 3.9]). Both groups demonstrated noninferiority with no significant interaction between dose and duration (P = .63). Of the 14 prespecified secondary end points, the only significant differences were 3-day vs 7-day treatment for cough duration (median 12 days vs 10 days; hazard ratio [HR], 1.2 [95% CI, 1.0 to 1.4]; P = .04) and sleep disturbed by cough (median, 4 days vs 4 days; HR, 1.2 [95% CI, 1.0 to 1.4]; P = .03). Among the subgroup of children with severe CAP, the primary end point occurred in 17.3% of lower-dose recipients vs 13.5% of higher-dose recipients (difference, 3.8% [1-sided 95% CI, -∞ to10%]; P value for interaction = .18) and in 16.0% with 3-day treatment vs 14.8% with 7-day treatment (difference, 1.2% [1-sided 95% CI, -∞ to 7.4%]; P value for interaction = .73). Conclusions and Relevance: Among children with CAP discharged from an emergency department or hospital ward (within 48 hours), lower-dose outpatient oral amoxicillin was noninferior to higher dose, and 3-day duration was noninferior to 7 days, with regard to need for antibiotic re-treatment. However, disease severity, treatment setting, prior antibiotics received, and acceptability of the noninferiority margin require consideration when interpreting the findings. Trial Registration: ISRCTN Identifier: ISRCTN76888927.


Assuntos
Amoxicilina/administração & dosagem , Antibacterianos/administração & dosagem , Infecções Comunitárias Adquiridas/tratamento farmacológico , Pneumonia/tratamento farmacológico , Administração Oral , Pré-Escolar , Esquema de Medicação , Duração da Terapia , Feminino , Humanos , Lactente , Masculino , Alta do Paciente , Retratamento/estatística & dados numéricos , Índice de Gravidade de Doença
16.
Clin Infect Dis ; 70(7): 1501-1508, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31633161

RESUMO

The reduction in childhood mortality noted in trials investigating azithromycin mass drug administration (MDA) for trachoma control has been confirmed by a recent large randomized controlled trial. Population-level implementation of azithromycin MDA may lead to selection of multiresistant pathogens. Evidence suggests that repeated azithromycin MDA may result in a sustained increase in macrolide and other antibiotic resistance in gut and respiratory bacteria. Current evidence comes from standard microbiological techniques in studies focused on a time-limited intervention, while MDA implemented for mortality benefits would likely repeatedly expose the population over a prolonged period and may require a different surveillance approach. Targeted short-term and long-term surveillance of resistance emergence to key antibiotics, especially those from the World Health Organization Access group, is needed throughout any implementation of azithromycin MDA, focusing on a genotypic approach to overcome the limitations of resistance surveillance in indicator bacteria.


Assuntos
Azitromicina , Tracoma , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Criança , Farmacorresistência Bacteriana , Humanos , Lactente , Administração Massiva de Medicamentos , Saúde Pública , Tracoma/tratamento farmacológico
17.
Clin Infect Dis ; 71(8): e226-e234, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31942952

RESUMO

BACKGROUND: Studies estimate that 30%-50% of antibiotics prescribed for hospitalized patients are inappropriate, but pediatric data are limited. Characterization of inappropriate prescribing practices for children is needed to guide pediatric antimicrobial stewardship. METHODS: Cross-sectional analysis of antibiotic prescribing at 32 children's hospitals in the United States. Subjects included hospitalized children with ≥ 1 antibiotic order at 8:00 am on 1 day per calendar quarter, over 6 quarters (quarter 3 2016-quarter 4 2017). Antimicrobial stewardship program (ASP) physicians and/or pharmacists used a standardized survey to collect data on antibiotic orders and evaluate appropriateness. The primary outcome was the percentage of antibiotics prescribed for infectious use that were classified as suboptimal, defined as inappropriate or needing modification. RESULTS: Of 34 927 children hospitalized on survey days, 12 213 (35.0%) had ≥ 1 active antibiotic order. Among 11 784 patients receiving antibiotics for infectious use, 25.9% were prescribed ≥ 1 suboptimal antibiotic. Of the 17 110 antibiotic orders prescribed for infectious use, 21.0% were considered suboptimal. Most common reasons for inappropriate use were bug-drug mismatch (27.7%), surgical prophylaxis > 24 hours (17.7%), overly broad empiric therapy (11.2%), and unnecessary treatment (11.0%). The majority of recommended modifications were to stop (44.7%) or narrow (19.7%) the drug. ASPs would not have routinely reviewed 46.1% of suboptimal orders. CONCLUSIONS: Across 32 children's hospitals, approximately 1 in 3 hospitalized children are receiving 1 or more antibiotics at any given time. One-quarter of these children are receiving suboptimal therapy, and nearly half of suboptimal use is not captured by current ASP practices.


Assuntos
Antibacterianos , Prescrições de Medicamentos , Antibacterianos/uso terapêutico , Criança , Estudos Transversais , Humanos , Prescrição Inadequada , Prevalência , Estados Unidos/epidemiologia
18.
Curr Opin Infect Dis ; 33(6): 517-529, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33044242

RESUMO

PURPOSE OF REVIEW: Gram-negative bacteria (GNB) are a major cause of infection worldwide and multidrug resistance in infants and children. The major pathogens include Klebsiella pneumoniae, Escherichia coli, Enterobacter spp., Pseudomonas aeruginosa and Acinetobacter baumannii. With new antibiotic options limited, immunization is likely to play a critical role in prevention. This review discusses their epidemiology, the current state of vaccine research and potential immunization strategies to protect children. A comprehensive review of the literature, conference abstracts along with web searches was performed to identify current and investigational vaccines against the major GNB in children. RECENT FINDINGS: Phase I--III vaccine trials have been undertaken for the major Gram-negative bacteria but not in infants or children. E. coli is a common infection in immune-competent children, including neonatal sepsis. Several vaccines are in late-phase clinical trials, with some already licensed for recurrent urinary tract infections in women. Klebsiella spp. causes community-acquired and hospital-acquired infections, including sepsis in neonates and immunocompromised children although no vaccine trials have extended beyond early phase 2 trials. P. aeruginosa is a common pathogen in patients with cystic fibrosis. Phase 1--3 vaccine and monoclonal antibody trials are in progress, although candidates provide limited coverage against pathogenic strains. Enterobacter spp. and A. baumannii largely cause hospital-acquired infections with experimental vaccines limited to phase 1 research. SUMMARY: The current immunization pipelines for the most prevalent GNB are years away from licensure. Similar to incentives for new antibiotics, global efforts are warranted to expedite the development of effective vaccines.


Assuntos
Vacinas Bacterianas/uso terapêutico , Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Imunização/métodos , Acinetobacter baumannii/imunologia , Adolescente , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Infecção Hospitalar/prevenção & controle , Farmacorresistência Bacteriana Múltipla , Enterobacter/imunologia , Escherichia coli/imunologia , Feminino , Infecções por Bactérias Gram-Negativas/epidemiologia , Humanos , Lactente , Recém-Nascido , Klebsiella pneumoniae/imunologia , Masculino , Pseudomonas aeruginosa/imunologia , Saúde Pública , Infecções Urinárias/tratamento farmacológico
19.
J Antimicrob Chemother ; 75(12): 3625-3634, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32989452

RESUMO

BACKGROUND: The pharmacokinetics of ß-lactam antibiotics in critical illness remain poorly characterized, particularly in neonates, children and the elderly. We undertook a pharmacokinetic study of commonly used ß-lactam antibiotics in critically ill patients of all ages. The aims were to produce a whole-life ß-lactam pharmacokinetic model and describe the extent to which standard doses achieve pharmacokinetic/pharmacodynamic targets associated with clinical cure. PATIENTS AND METHODS: A total of 212 critically ill participants with an age range from 1 day (gestational age 24 weeks) to 90 years were recruited from a UK hospital, providing 1339 pharmacokinetic samples. Population pharmacokinetic analysis was undertaken using non-linear mixed-effects modelling (NONMEM) for each drug. Pooled data were used to estimate maturation and decline of ß-lactam pharmacokinetics throughout life. RESULTS: Pharmacokinetic models for eight drugs were described, including what is thought to be the first benzylpenicillin model in critically ill adults. We estimate that 50% of adult ß-lactam clearance is achieved by 43 weeks post-menstrual age (chronological plus gestational age). Fifty percent of decline from peak adult clearance occurs by 71 years. Paediatric participants were significantly less likely than adults to achieve pharmacokinetic/pharmacodynamic targets with standard antibiotic doses (P < 0.01). CONCLUSIONS: We believe this to be the first prospective whole-life antibiotic pharmacokinetic study in the critically ill. The study provides further evidence that standard antibiotic doses fail to achieve pharmacokinetic/pharmacodynamic targets associated with clinical success in adults, children and neonates. Maturation and decline parameters estimated from this study could be adopted as a standard for future prospective studies.


Assuntos
Estado Terminal , beta-Lactamas , Adulto , Idoso , Antibacterianos/uso terapêutico , Criança , Humanos , Recém-Nascido , Testes de Sensibilidade Microbiana , Estudos Prospectivos
20.
Bull World Health Organ ; 98(7): 458-466, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32742031

RESUMO

OBJECTIVE: To investigate international consumption patterns of child-appropriate oral formulations of antibiotics by formulation type, with a focus on dispersible tablets, using data from a global sales database. METHOD: Antibiotic sales data for 2015 covering 74 countries and regional country groups were obtained from the MIDAS® pharmaceutical sales database, which includes samples of pharmacy wholesalers and retailers. The focus was on sales of child-appropriate oral formulations of Access antibiotics in the 2017 World Health Organization's WHO Model list of essential medicines for children. Sales volumes are expressed using a standard unit (i.e. one tablet, capsule, ampoule or vial or 5 mL of liquid). Sales were analysed by antibiotic, WHO region and antibiotic formulation. FINDINGS: Globally, 17.7 billion standard units of child-appropriate oral antibiotic formulations were sold in 2015, representing 24% of total antibiotic sales of 74.4 billion units (both oral and parenteral) in the database. The top five child-appropriate Access antibiotics by sales volume were amoxicillin, amoxicillin with clavulanic acid, trimethoprim-sulfamethoxazole, cefalexin and ampicillin. The proportion of the top five sold for use as a syrup varied between 42% and 99%. Dispersible tablets represented only 22% of all child-appropriate oral formulation sales and made up only 15% of sales of 10 selected Access antibiotics on the model list for children. CONCLUSION: Globally most child-appropriate oral antibiotics were not sold as dispersible tablets in 2015, as recommended by WHO. There is a clear need for novel solid forms of antibiotics suitable for use in children.


Assuntos
Antibacterianos/uso terapêutico , Uso de Medicamentos/estatística & dados numéricos , Administração Oral , Criança , Pré-Escolar , Comércio , Bases de Dados Factuais , Humanos , Lactente , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA