Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 35(4): 398-409, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38254271

RESUMO

SIGNIFICANCE STATEMENT: Autosomal dominant polycystic kidney disease (ADPKD) is a devastating disorder caused by mutations in polycystin 1 ( PKD1 ) and polycystin 2 ( PKD2 ). Currently, the mechanism for renal cyst formation remains unclear. Here, we provide convincing and conclusive data in mice demonstrating that Pkd2 deletion in embryonic Aqp2 + progenitor cells (AP), but not in neonate or adult Aqp2 + cells, is sufficient to cause severe polycystic kidney disease (PKD) with progressive loss of intercalated cells and complete elimination of α -intercalated cells, accurately recapitulating a newly identified cellular phenotype of patients with ADPKD. Hence, Pkd2 is a new potential regulator critical for balanced AP differentiation into, proliferation, and/or maintenance of various cell types, particularly α -intercalated cells. The Pkd2 conditional knockout mice developed in this study are valuable tools for further studies on collecting duct development and early steps in cyst formation. The finding that Pkd2 loss triggers the loss of intercalated cells is a suitable topic for further mechanistic studies. BACKGROUND: Most cases of autosomal dominant polycystic kidney disease (ADPKD) are caused by mutations in PKD1 or PKD2. Currently, the mechanism for renal cyst formation remains unclear. Aqp2 + progenitor cells (AP) (re)generate ≥5 cell types, including principal cells and intercalated cells in the late distal convoluted tubules (DCT2), connecting tubules, and collecting ducts. METHODS: Here, we tested whether Pkd2 deletion in AP and their derivatives at different developmental stages is sufficient to induce PKD. Aqp2Cre Pkd2f/f ( Pkd2AC ) mice were generated to disrupt Pkd2 in embryonic AP. Aqp2ECE/+Pkd2f/f ( Pkd2ECE ) mice were tamoxifen-inducted at P1 or P60 to inactivate Pkd2 in neonate or adult AP and their derivatives, respectively. All induced mice were sacrificed at P300. Immunofluorescence staining was performed to categorize and quantify cyst-lining cell types. Four other PKD mouse models and patients with ADPKD were similarly analyzed. RESULTS: Pkd2 was highly expressed in all connecting tubules/collecting duct cell types and weakly in all other tubular segments. Pkd2AC mice had obvious cysts by P6 and developed severe PKD and died by P17. The kidneys had reduced intercalated cells and increased transitional cells. Transitional cells were negative for principal cell and intercalated cell markers examined. A complete loss of α -intercalated cells occurred by P12. Cysts extended from the distal renal segments to DCT1 and possibly to the loop of Henle, but not to the proximal tubules. The induced Pkd2ECE mice developed mild PKD. Cystic α -intercalated cells were found in the other PKD models. AQP2 + cells were found in cysts of only 13/27 ADPKD samples, which had the same cellular phenotype as Pkd2AC mice. CONCLUSIONS: Hence, Pkd2 deletion in embryonic AP, but unlikely in neonate or adult Aqp2 + cells (principal cells and AP), was sufficient to cause severe PKD with progressive elimination of α -intercalated cells, recapitulating a newly identified cellular phenotype of patients with ADPKD. We proposed that Pkd2 is critical for balanced AP differentiation into, proliferation, and/or maintenance of cystic intercalated cells, particularly α -intercalated cells.


Assuntos
Aquaporina 2 , Rim Policístico Autossômico Dominante , Adulto , Animais , Humanos , Camundongos , Aquaporina 2/deficiência , Aquaporina 2/genética , Cistos , Rim/metabolismo , Camundongos Knockout , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Insuficiência Renal Crônica , Células-Tronco/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
2.
Clin Sci (Lond) ; 137(15): 1145-1150, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37553961

RESUMO

Polycystic kidney disease (PKD) is a developmental disorder, which either manifests in early childhood or later in life, depending on the genetic mutation one harbors. The mechanisms of cyst initiation are not well understood. Increasing literature is now suggesting that Notch signaling may play a critical role in PKD. Activation of Notch signaling is important during nephrogenesis and slows down after development. Deletion of various Notch molecules in the cap mesenchyme leads to formation of cysts and early death in mice. A new study by Belyea et al. has now found that cells of renin lineage may link Notch expression and cystic kidney disease. Here, we use our understanding of Notch signaling and PKD to speculate about the significance of these interactions.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Pré-Escolar , Camundongos , Humanos , Animais , Renina/genética , Renina/metabolismo , Doenças Renais Policísticas/genética , Transdução de Sinais , Mutação , Rim Policístico Autossômico Dominante/genética , Rim/metabolismo
3.
Kidney Int ; 102(3): 577-591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644283

RESUMO

Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked ß-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Rim Policístico Autossômico Dominante , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Peso Corporal , Cílios/patologia , Modelos Animais de Doenças , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/patologia , Túbulos Renais , Camundongos , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
4.
FASEB J ; 35(5): e21533, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33826787

RESUMO

Polycystic kidney disease (PKD) is a genetic disorder characterized by aberrant renal epithelial cell proliferation and formation and progressive growth of numerous fluid-filled cysts within the kidneys. Previously, we showed that there is elevated Notch signaling compared to normal renal epithelial cells and that Notch signaling contributes to the proliferation of cystic cells. Quinomycin A, a bis-intercalator peptide, has previously been shown to target the Notch signaling pathway and inhibit tumor growth in cancer. Here, we show that Quinomycin A decreased cell proliferation and cyst growth of human ADPKD cyst epithelial cells cultured within a 3D collagen gel. Treatment with Quinomycin A reduced kidney weight to body weight ratio and decreased renal cystic area and fibrosis in Pkd1RC/RC ; Pkd2+/- mice, an orthologous PKD mouse model. This was accompanied by reduced expression of Notch pathway proteins, RBPjk and HeyL and cell proliferation in kidneys of PKD mice. Quinomycin A treatments also normalized cilia length of cyst epithelial cells derived from the collecting ducts. This is the first study to demonstrate that Quinomycin A effectively inhibits PKD progression and suggests that Quinomycin A has potential therapeutic value for PKD patients.


Assuntos
Antibacterianos/farmacologia , Cistos/tratamento farmacológico , Modelos Animais de Doenças , Equinomicina/farmacologia , Doenças Renais Policísticas/complicações , Canais de Cátion TRPP/fisiologia , Animais , Cistos/etiologia , Cistos/metabolismo , Cistos/patologia , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Inflamm Res ; 71(4): 513-520, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35301550

RESUMO

OBJECTIVE/DESIGN: Pediatric meningitis is characterized by a colossal inflammatory response to the pathogen in the central nervous system (CNS). This unabated inflammatory response persists even after the removal of the pathogen by antibiotics/steroids causing collateral damage to CNS tissue. Toll-like receptors (TLRs) are the key players in the recognition and elicitation of innate-immune response against bacterial/viral components in cerebrospinal fluid (CSF). Till date, the precise understanding of TLR-triggered inflammatory response in pediatric meningitis is lacking. The present study was designed to delineate the role of TLR transcriptome and downstream signaling pathways in CSF of pediatric meningitis. METHODS: Children in the age group of > 3 months to 12 years with pediatric meningitis were included. A total of 249 cases of pediatric meningitis (bacterial = 89, viral = 160) were included. In addition, 71 children who tested negative to the pathogen in CSF tap and did not have signs of infection clinically constituted the controls. RNA was extracted from the CSF samples of both cases and controls. The relative gene expression profile of 42 TLR signaling pathway genes was performed. For the analysis of secretory cytokines and chemokines in CSF, Luminex assay was performed. RESULTS: We report global upregulation of TLR genes in patients with acute bacterial meningitis (ABM). The downstream signaling molecules were upregulated as well. The CSF of pediatric ABM patients revealed a predominant pro-inflammatory milieu marked by increased levels of pro-inflammatory cytokines. A significant correlation between poor clinical outcomes of patients and an increased expression of TLR/pro-inflammatory cytokine genes was observed. CONCLUSION: Our findings provide support for future studies exploring TLR-based adjunct therapy to limit the neurological sequelae, owing to persistent inflammation in pediatric ABM patients.


Assuntos
Meningites Bacterianas , Receptores Toll-Like , Transcriptoma , Criança , Pré-Escolar , Citocinas/genética , Humanos , Meningites Bacterianas/líquido cefalorraquidiano , Meningites Bacterianas/genética , Transdução de Sinais , Receptores Toll-Like/genética
6.
J Pathol ; 254(3): 289-302, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33900625

RESUMO

Polycystic liver disease (PLD) is characterized by the growth of numerous biliary cysts and presents in patients with autosomal dominant polycystic kidney disease (ADPKD), causing significant morbidity. Interestingly, deletion of intraflagellar transport-B (IFT-B) complex genes in adult mouse models of ADPKD attenuates the severity of PKD and PLD. Here we examine the role of deletion of an IFT-A gene, Thm1, in PLD of juvenile and adult Pkd2 conditional knockout mice. Perinatal deletion of Thm1 resulted in disorganized and expanded biliary regions, biliary fibrosis, increased serum bile acids, and a shortened primary cilium on cytokeratin 19+ (CK19+) epithelial cells. In contrast, perinatal deletion of Pkd2 caused PLD, with multiple CK19+ epithelial cell-lined cysts, fibrosis, lengthened primary cilia, and increased Notch and ERK signaling. Perinatal deletion of Thm1 in Pkd2 conditional knockout mice increased hepatomegaly, liver necrosis, as well as serum bilirubin and bile acid levels, indicating enhanced liver disease severity. In contrast to effects in the developing liver, deletion of Thm1 alone in adult mice did not cause a biliary phenotype. Combined deletion of Pkd2 and Thm1 caused variable hepatic cystogenesis at 4 months of age, but differences in hepatic cystogenesis between Pkd2- and Pkd2;Thm1 knockout mice were not observed by 6 months of age. Similar to juvenile PLD, Notch and ERK signaling were increased in adult Pkd2 conditional knockout cyst-lining epithelial cells. Taken together, Thm1 is required for biliary tract development, and proper biliary development restricts PLD severity. Unlike IFT-B genes, Thm1 does not markedly attenuate hepatic cystogenesis, suggesting differences in regulation of signaling and cystogenic processes in the liver by IFT-B and -A. Notably, increased Notch signaling in cyst-lining epithelial cells may indicate that aberrant activation of this pathway promotes hepatic cystogenesis, presenting as a novel potential therapeutic target. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Sistema Biliar/patologia , Rim Policístico Autossômico Dominante/patologia , Animais , Sistema Biliar/embriologia , Camundongos , Camundongos Knockout , Canais de Cátion TRPP/deficiência
7.
Kidney Int ; 99(3): 657-670, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33159962

RESUMO

Abnormal mitochondrial function is a well-recognized feature of acute and chronic kidney diseases. To gain insight into the role of mitochondria in kidney homeostasis and pathogenesis, we targeted mitochondrial transcription factor A (TFAM), a protein required for mitochondrial DNA replication and transcription that plays a critical part in the maintenance of mitochondrial mass and function. To examine the consequences of disrupted mitochondrial function in kidney epithelial cells, we inactivated TFAM in sine oculis-related homeobox 2-expressing kidney progenitor cells. TFAM deficiency resulted in significantly decreased mitochondrial gene expression, mitochondrial depletion, inhibition of nephron maturation and the development of severe postnatal cystic disease, which resulted in premature death. This was associated with abnormal mitochondrial morphology, a reduction in oxygen consumption and increased glycolytic flux. Furthermore, we found that TFAM expression was reduced in murine and human polycystic kidneys, which was accompanied by mitochondrial depletion. Thus, our data suggest that dysregulation of TFAM expression and mitochondrial depletion are molecular features of kidney cystic disease that may contribute to its pathogenesis.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Proteínas de Grupo de Alta Mobilidade , Humanos , Rim , Camundongos , Proteínas Mitocondriais/genética , Fatores de Transcrição/genética
8.
Blood Cells Mol Dis ; 82: 102356, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171112

RESUMO

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia of children with systemic involvement and poor outcome. The altered RAS-RAF-MEK-ERK cell signalling pathway due to somatic mutation of BRAF V600E is the most common genetic abnormality associated with the disease. In the current study, we highlight the frequency of BRAF V600E in our cohort of LCH cases (n = 31) and its relation with clinical outcome. On Real-Time PCR and Sanger sequencing, BRAF V600E was detected in 6/31 (19%) patients. All cases positive for BRAF V600E mutation had multisystem involvement/disseminated disease compared to BRAF mutation negative cases (100% v/s 41%, p = 0.0348). Univariate analysis also revealed significant correlation of mutation positivity with risk category (p = 0.09). The event free survival and overall survival at 36 months for BRAF mutation positive group compared to mutation negative group was 17% v/s 72% (Log rank test p = 0.0110) and 32.5% v/s 82% (p = 0.0330), respectively. In our study, BRAF V600E positivity was low (19%) however, all positive cases had multisystem involvement and a poor three year survival confirming BRAF V600E to be a poor prognostic marker.


Assuntos
Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/mortalidade , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas B-raf/genética , Substituição de Aminoácidos , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos , Taxa de Sobrevida
9.
Pediatr Hematol Oncol ; 37(6): 539-544, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32364815

RESUMO

Imatinib-induced tyrosine kinase inhibition extends beyond the BCR-ABL mutation, resulting in adverse effects. We evaluated hypogammaglobulinemia as a potential 'off-target' action of imatinib in children with CML. A cross-sectional, observational study was performed. Patients with CML in chronic phase, age <18-years at diagnosis, receiving imatinib for a duration exceeding 6-months were enrolled. Serum immunoglobulin G, A, and M were measured by end-point nephelometry. Thirty patients were enrolled. The mean age at diagnosis was 10.4 ± 3.1 years (range: 5-18). The mean age at enrollment was 16.4 ± 4.1 years (range: 9-23). The median dose of imatinib was 287.5 mg/m2 (IQR: 267.3, 345.0). The median duration of imatinib-therapy was 6-years (IQR: 3.0, 10.3). The median (IQR) normalized levels of IgG, IgA, and IgM were 33.0% (IQR: -12.8, 58.7), 28.1% (IQR: -17.0, 90.1) and 15.9% (IQR: -9.3, 40.5), respectively. The IgG, IgA, and IgM levels were reduced in 9 (30%), 8 (27%), and 10 (33%) patients, respectively. Five (17%) patients had pan-hypogammaglobulinemia. We suggest checking immunoglobulin levels in patients with CML receiving imatinib with recurrent/unusual infections.


Assuntos
Agamaglobulinemia , Mesilato de Imatinib , Leucemia Mielogênica Crônica BCR-ABL Positiva , Adolescente , Adulto , Agamaglobulinemia/sangue , Agamaglobulinemia/induzido quimicamente , Agamaglobulinemia/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Mesilato de Imatinib/administração & dosagem , Mesilato de Imatinib/efeitos adversos , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , Masculino
12.
Exp Cell Res ; 355(2): 142-152, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28385574

RESUMO

The hormone ouabain has been shown to enhance the cystic phenotype of autosomal dominant polycystic kidney disease (ADPKD). Among other characteristics, the ADPKD phenotype includes cell de-differentiation and epithelial to mesenchymal transition (EMT). Here, we determined whether physiological concentrations of ouabain induces EMT in human renal epithelial cells from patients with ADPKD. We found that ADPKD cells respond to ouabain with a decrease in expression of the epithelial marker E-cadherin and increase in the expression of the mesenchymal markers N-cadherin, α smooth muscle actin (αSMA) and collagen-I; and the tight junction protein occludin and claudin-1. Other adhesion molecules, such as ZO-1, ß-catenin and vinculin were not significantly modified by ouabain. At the cellular level, ouabain stimulated ADPKD cell migration, reduced cell-cell interaction, and the ability of ADPKD cells to form aggregates. Moreover, ouabain increased the transepithelial electrical resistance of ADPKD cell monolayers, suggesting that the paracellular transport pathway was preserved in the cells. These effects of ouabain were not observed in normal human kidney (NHK) cells. Altogether these results show a novel role for ouabain in ADPKD, inducing changes that lead to a partial EMT phenotype in the cells. These effects further support the key role that ouabain has as a factor that promotes the cystic characteristics of ADPKD cells.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ouabaína/farmacologia , Rim Policístico Autossômico Dominante/patologia , Adulto , Idoso , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/metabolismo , Relação Estrutura-Atividade
13.
Gynecol Oncol ; 138(2): 358-62, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024767

RESUMO

OBJECTIVE: Human papillomavirus (HPV) is a proven etiological agent for cervical cancer However, not all HPV infections result in cervical cancer. The mechanisms of host immune system to prevent/control HPV infection remain poorly understood. Toll-like receptors (TLRs) are a system of innate immune defense. HPV has been demonstrated to modulate TLR expression and interfere in TLR signaling pathways, leading to persistent viral infection and carcinogenesis. The aim was to study the relative gene expression of TLRs in cervical squamous cell carcinoma (SCC). METHODS: Gene expression profile of TLRs 1 to 9 was examined in 30 cervical SCCs and an equal number of normal cervical tissue samples using a PCR array platform. Gene expression studies for TLRs 3 and 7 were validated by western blotting. RESULTS: HPV was detected in all cases and in none of the controls (p<0.0001). HPV16 was the preponderant (83.3%) subtype. A significant downregulation in the relative gene expression of TLR3 (p<0.0001), TLR4 (p<0.0005) and TLR5 (p<0.0001) was observed in cases. A significant upregulation for TLR1 was observed (p=0.006). Although TLRs 2, 7, 8 and 9 were upregulated and TLR6 was downregulated, it was not significant. The western blot performed with antibodies against TLRs 3 and 7 confirmed the findings of the gene expression studies. CONCLUSIONS: A significant downregulation in the gene expression of TLRs 3, 4 and 5 and upregulation of TLR1 was observed in cervical SCC as compared to controls. Study results evoke the proposition for investigating TLRs 3, 4 and 5 agonists for therapeutic exploration.


Assuntos
Carcinoma de Células Escamosas/genética , Receptores Toll-Like/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Humanos , Pessoa de Meia-Idade , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Estudos Prospectivos , Receptores Toll-Like/metabolismo , Transcriptoma , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
14.
Birth Defects Res C Embryo Today ; 102(2): 159-73, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24861210

RESUMO

For more than a decade, evidence has accumulated linking dysfunction of primary cilia to renal cystogenesis, yet molecular mechanisms remain undefined. The pathogenesis of renal cysts is complex, involving multiple cellular aberrations and signaling pathways. Adding to this complexity, primary cilia exhibit multiple roles in a context-dependent manner. On renal epithelial cells, primary cilia act as mechanosensors and trigger extracellular Ca(2+) influx in response to laminar fluid flow. During mammalian development, primary cilia mediate the Hedgehog (Hh), Wnt, and Notch pathways, which control cell proliferation and differentiation, and tissue morphogenesis. Further, experimental evidence suggests the developmental state of the kidney strongly influences renal cystic disease. Thus, we review evidence for regulation of Ca(2+) and cAMP, key molecules in renal cystogenesis, at the primary cilium, the role of Hh, Wnt, and Notch signaling in renal cystic disease, and the interplay between these developmental pathways and Ca(2+) signaling. Indeed if these developmental pathways influence renal cystogenesis, these may represent novel therapeutic targets that can be integrated into a combination therapy for renal cystic disease.


Assuntos
Cílios/patologia , Rim/patologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Animais , Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Rim/citologia , Receptores Notch/genética , Receptores Notch/metabolismo , Via de Sinalização Wnt
15.
Am J Physiol Renal Physiol ; 304(8): F1127-36, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23389453

RESUMO

The Notch pathway is an evolutionarily conserved signaling cascade that is critical in kidney development and has also been shown to play a pathogenetic role in a variety of kidney diseases. We have previously shown that the Notch signaling pathway is activated in human immunodeficiency virus-associated nephropathy (HIVAN) as well as in a rat model of the disease. In this study, we examined Notch signaling in the well established Tg26 mouse model of HIVAN. Notch signaling components were distinctly upregulated in the kidneys of these mice as well as in immortalized podocytes derived from these mice. Notch1 and Notch4 were upregulated in the Tg26 glomeruli, and Notch4 was also expressed in tubules. Notch ligands Jagged1, Jagged2, Delta-like1, and Delta-like 4 were all upregulated in the tubules of Tg26 mice, but glomeruli showed minimal expression of Notch ligands. To examine a potential pathogenetic role for Notch in HIVAN, Tg26 mice were treated with GSIXX, a gamma secretase inhibitor that blocks Notch signaling. Strikingly, GSIXX treatment resulted in significant improvement in both histological kidney injury scores and renal function. GSIXX-treated Tg26 mice also showed diminished podocyte proliferation and dedifferentiation, cellular hallmarks of the disease. Moreover, GSIXX blocked podocyte proliferation in vitro induced by HIV proteins Nef and Tat. These studies suggest that Notch signaling can promote HIVAN progression and that Notch inhibition may be a viable treatment strategy for HIVAN.


Assuntos
Nefropatia Associada a AIDS/metabolismo , Podócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Nefropatia Associada a AIDS/tratamento farmacológico , Nefropatia Associada a AIDS/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Linhagem Celular Transformada , Dibenzazepinas/farmacologia , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiologia , Ligantes , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Podócitos/citologia , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptor Notch1/antagonistas & inibidores , Receptor Notch4 , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
16.
Ophthalmic Genet ; 44(1): 1-5, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36594723

RESUMO

BACKGROUND: The KIR receptors present on the natural killer (NK) cells play a crucial role by exercising cytotoxicity to eliminate tumor cells. Both KIR and class-I HLA molecules exhibit extensive polymorphism. Although RB1 inactivation triggers the initiation of retinoblastoma; however additional immune alterations trigger tumor development. The aim was to explore the KIR/HLA polymorphism and its role in the pathogenesis of retinoblastoma. METHODS: Patients with unilateral, non-familial retinoblastoma were enrolled as cases. Healthy individuals matched for ethnicity were enrolled as controls. KIR genotyping was performed by sequence-specific primer assay. The investigated KIR genes included: inhibitory (2DL1, 2DL2, 2DL3, 2DL4, 2DL5A, 2DL5B), activating (2DS1, 2DS2, 2DS3, 2DS4*FUL, 2DS4*DEL, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1) and pseudogenes (2DP1, 3DP1*FUL, 3DP1*DEL). In addition, HLA ligands were investigated by sequence-specific oligonucleotide assay for HLA-A, B, and C locus. RESULTS: KIR genotyping was performed in 48 cases and 107 controls. The mean age of cases was 2.9 ± 2.2 years (range: 0.25-10). Among the 19 KIR genes, the frequency of KIR2DS4*FUL (p = 0.0019) and 2DS5 (p = 0.0095) was increased among cases. HLA ligands were investigated in 25 cases and 50 controls. The frequency of HLA ligands (C1/C2, Bw4, A3/A11) was similar among cases and controls. However, the KIR/HLA combination frequency for KIR3DS1/HLA-Bw4 was decreased in cases (p = 0.006). CONCLUSION: It is the pioneer study to report the association of killer cell immunoglobulin-like receptors in retinoblastoma. KIR2DS4*FUL and KIR2DS5 had a susceptible, and KIR3DS1/HLA-BW4 had a protective role in retinoblastoma. The results will aid in exploring the therapeutic potential of NK cell-based therapy for retinoblastoma.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humanos , Lactente , Pré-Escolar , Criança , Frequência do Gene , Retinoblastoma/genética , Receptores KIR/genética , Neoplasias da Retina/genética , Imunoglobulinas/genética , Genótipo
17.
Cells ; 12(17)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681898

RESUMO

The PKD1 gene, encoding protein polycystin-1 (PC1), is responsible for 85% of cases of autosomal dominant polycystic kidney disease (ADPKD). PC1 has been shown to be present in urinary exosome-like vesicles (PKD-ELVs) and lowered in individuals with germline PKD1 mutations. A label-free mass spectrometry comparison of urinary PKD-ELVs from normal individuals and those with PKD1 mutations showed that several proteins were reduced to a degree that matched the decrease observed in PC1 levels. Some of these proteins, such as polycystin-2 (PC2), may be present in a higher-order multi-protein assembly with PC1-the polycystin complex (PCC). CU062 (Q9NYP8) is decreased in ADPKD PKD-ELVs and, thus, is a candidate PCC component. CU062 is a small glycoprotein with a signal peptide but no transmembrane domain and can oligomerize with itself and interact with PC1. We investigated the localization of CU062 together with PC1 and PC2 using immunofluorescence (IF). In nonconfluent cells, all three proteins were localized in close proximity to focal adhesions (FAs), retraction fibers (RFs), and RF-associated extracellular vesicles (migrasomes). In confluent cells, primary cilia had PC1/PC2/CU062 + extracellular vesicles adherent to their plasma membrane. In cells exposed to mitochondrion-decoupling agents, we detected the development of novel PC1/CU062 + ring-like structures that entrained swollen mitochondria. In contact-inhibited cells under mitochondrial stress, PC1, PC2, and CU062 were observed on large, apically budding extracellular vesicles, where the proteins formed a reticular network on the membrane. CU062 interacts with PC1 and may have a role in the identification of senescent mitochondria and their extrusion in extracellular vesicles.


Assuntos
Vesículas Extracelulares , Rim Policístico Autossômico Dominante , Humanos , Genes Reguladores , Mitocôndrias , Canais de Cátion TRPP
18.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745500

RESUMO

Antiretroviral therapy (ART) has profoundly decreased HIV-1 associated morbidity. However, despite ART, immune cells remain latently infected and slowly release viral proteins, leading to chronic inflammation and HIV associated comorbidities. Thus, new strategies are needed to reduce the inflammatory effects of HIV-1. In previous studies we found that gamma secretase inhibitor (GSIXX) ameliorated renal lesions of HIV-Tg26 mice carrying replication defective HIV-1 PNL4-3 by inhibiting Notch activation. Since gamma secretase inhibition is not a safe strategy in humans, here we examined the specific role of the Notch3 pathway in the pathogenesis of the renal lesions and outcome of HIV-Tg26 mice. We found that Notch3 is activated in podocytes and other renal cells in HIV-Tg26 mice and human biopsies with HIV-1 associated Nephropathy (HIVAN). Knockdown of Notch3 in HIV-Tg26 mice revealed a marked reduction in the mortality rate, improvement in renal injury and function. RNA sequencing and immunolabeling data revealed that Notch3 deletion drastically reduced infiltrating renal macrophages in HIV-Tg-N3KO mice in association with renal reduction of HIV-nef mRNA expression levels. In fact, bone marrow derived macrophages from HIV-Tg26 mice showed a significant activation of Notch3 signaling. Further, systemic levels of TNF-alpha and MCP-1 and other inflammatory chemokines and cytokines were reduced in Tg-N3KO mice as compared to HIV-Tg26 mice and this translated to a marked reduction of HIV-induced skin lesions. Taken together, these studies strongly point to a dual inhibitory/therapeutic effect of Notch3 inhibition on HIV-induced systemic, skin and renal lesions independently of ART.

19.
J Neuroimmune Pharmacol ; 17(1-2): 76-93, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34993905

RESUMO

Opioid use disorder (OUD) is defined as the chronic use or misuse of prescribed or illicitly obtained opioids and is characterized by clinically significant impairment. The etiology of OUD is multifactorial as it is influenced by genetics, environmental factors, stress response and behavior. Given the profound role of the gut microbiome in health and disease states, in recent years there has been a growing interest to explore interactions between the gut microbiome and the central nervous system as a causal link and potential therapeutic source for OUD. This review describes the role of the gut microbiome and opioid-induced immunopathological disturbances at the gut epithelial surface, which collectively contribute to OUD and perpetuate the vicious cycle of addiction and relapse.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Humanos , Analgésicos Opioides/efeitos adversos , Sistema Nervoso
20.
Am J Physiol Renal Physiol ; 301(4): F897-906, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21697238

RESUMO

The Na-K-ATPase is part of a cell signaling complex, the Na-K-ATPase signalosome, which upon activation by the hormone ouabain regulates the function of different cell types. We previously showed that ouabain induces proliferation of epithelial cells derived from renal cysts of patients with autosomal dominant polycystic kidney disease (ADPKD cells). Here, we investigated the signaling pathways responsible for mediating the effects of ouabain in these cells. Incubation of ADPKD cells with ouabain, in concentrations similar to those found in blood, stimulated phosphorylation of the epidermal growth factor receptor (EGFR) and promoted its association to the Na-K-ATPase. In addition, ouabain activated the kinase Src, but not the related kinase Fyn. Tyrphostin AG1478 and PP2, inhibitors of EGFR and Src, respectively, blocked ouabain-dependent ADPKD cell proliferation. Treatment of ADPKD cells with ouabain also caused phosphorylation of the caveolar protein caveolin-1, and disruption of cell caveolae with methyl-ß-cyclodextrin prevented Na-K-ATPase-EGFR interaction and ouabain-induced proliferation of the cells. Downstream effects of ouabain in ADPKD cells included activation of B-Raf and MEK and phosphorylation of the extracellular regulated kinase ERK, which translocated into the ADPKD cell nuclei. Finally, ouabain reduced expression of the cyclin-dependent kinase inhibitors p21 and p27, which are suppressors of cell proliferation. Different from ADPKD cells, ouabain showed no significant effect on B-Raf, p21, and p27 in normal human kidney epithelial cells. Altogether, these results identify intracellular pathways of ouabain-dependent Na-K-ATPase-mediated signaling in ADPKD cells, including EGFR-Src-B-Raf-MEK/ERK, and establish novel mechanisms involved in ADPKD cell proliferation.


Assuntos
Inibidores Enzimáticos/farmacologia , Ouabaína/farmacologia , Rim Policístico Autossômico Dominante/enzimologia , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Caveolina 1/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , MAP Quinase Quinase Quinases/metabolismo , Fosforilação , Rim Policístico Autossômico Dominante/induzido quimicamente , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Pirimidinas/farmacologia , Quinazolinas , ATPase Trocadora de Sódio-Potássio/metabolismo , Tirfostinas/farmacologia , beta-Ciclodextrinas/farmacologia , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA