Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892264

RESUMO

Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.


Assuntos
Anticonvulsivantes , Descoberta de Drogas , Epilepsia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Animais , Descoberta de Drogas/métodos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Desenvolvimento de Medicamentos
2.
FASEB J ; 36(10): e22559, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125047

RESUMO

Increased fluid-flow shear stress (FFSS) contributes to hyperfiltration-induced podocyte and glomerular injury resulting in progression of chronic kidney disease (CKD). We reported that increased FFSS in vitro and in vivo upregulates PGE2 receptor EP2 (but not EP4 expression), COX2-PGE2 -EP2 axis, and EP2-linked Akt-GSK3ß-ß-catenin signaling pathway in podocytes. To understand and use the disparities between PGE2 receptors, specific agonists, and antagonists of EP2 and EP4 were used to assess phosphorylation of Akt, GSK3ß and ß-catenin in podocytes using Western blotting, glomerular filtration barrier function using in vitro albumin permeability (Palb ) assay, and mitigation of hyperfiltration-induced injury in unilaterally nephrectomized (UNX) mice at 1 and 6 months. Results show an increase in Palb by PGE2 , EP2 agonist (EP2AGO ) and EP4 antagonist (EP4ANT ), but not by EP2 antagonist (EP2ANT ) or EP4 agonist (EP4AGO ). Pretreatment with EP2ANT blocked the effect of PGE2 or EP2AGO on Palb . Modulation of EP2 and EP4 also induced opposite effects on phosphorylation of Akt and ß-Catenin. Individual agonists or antagonists of EP2 or EP4 did not induce significant improvement in albuminuria in UNX mice. However, treatment with a combination EP2ANT + EP4AGO for 1 or 6 months caused a robust decrease in albuminuria. EP2ANT + EP4AGO combination did not impact adaptive hypertrophy or increased serum creatinine. Observed differences between expression of EP2 and EP4 on the glomerular barrier highlight these receptors as potential targets for intervention. Safe and effective mitigating effect of EP2ANT + EP4AGO presents a novel opportunity to delay the progression of hyperfiltration-associated CKD as seen in transplant donors.


Assuntos
Receptores de Prostaglandina E Subtipo EP2 , Insuficiência Renal Crônica , Albuminas , Albuminúria , Animais , Creatinina , Ciclo-Oxigenase 2 , Dinoprostona/metabolismo , Glicogênio Sintase Quinase 3 beta , Hormônios Esteroides Gonadais , Camundongos , Proteínas Proto-Oncogênicas c-akt , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4 , beta Catenina
3.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628958

RESUMO

Depending on their central metal atom, metalloporphyrins (MPs) can attenuate or exacerbate the severity of immune-mediated kidney injury, and this has been attributed to the induction or inhibition of heme oxygenase (HO) activity, particularly the inducible isoform (HO-1) of this enzyme. The role of central metal or porphyrin moieties in determining the efficacy of MPs to attenuate injury, as well as mechanisms underlying this effect, have not been assessed. Using an antibody-mediated complement-dependent model of injury directed against rat visceral glomerular epithelial cells (podocytes) and two MPs (FePPIX, CoPPIX) that induce both HO-1 expression and HO enzymatic activity in vivo but differ in their chelated metal, we assessed their efficacy in reducing albuminuria. Podocyte injury was induced using rabbit immune serum raised against the rat podocyte antigen, Fx1A, and containing an anti-Fx1A antibody that activates complement at sites of binding. FePPIX or CoPPIX were injected intraperitoneally (5 mg/kg) 24 h before administration of the anti-Fx1A serum and on days 1, 3, 6, and 10 thereafter. Upon completion of urine collection on day 14, the kidney cortex was obtained for histopathology and isolation of glomeruli, from which total protein extracts were obtained. Target proteins were analyzed by capillary-based separation and immunodetection (Western blot analysis). Both MPs had comparable efficacy in reducing albuminuria in males, but the efficacy of CoPPIX was superior in female rats. The metal-free protoporphyrin, PPIX, had minimal or no effect on urine albumin excretion. CoPPIX was also the most potent MP in inducing glomerular HO-1, reducing complement deposition, and preserving the expression of the complement regulatory protein (CRP) CD55 but not that of CD59, the expression of which was reduced by both MPs. These observations demonstrate that the metal moiety of HO-1-inducing MPs plays an important role in reducing proteinuria via mechanisms involving reduced complement deposition and independently of an effect on CRPs.


Assuntos
Metaloporfirinas , Podócitos , Porfirinas , Feminino , Masculino , Animais , Coelhos , Ratos , Metaloporfirinas/farmacologia , Metaloporfirinas/uso terapêutico , Albuminúria , Proteinúria/tratamento farmacológico
4.
Endocr Pract ; 28(1): 8-15, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371197

RESUMO

OBJECTIVE: The prevalence of chronic kidney disease (CKD) in the United States is 13% of the general population. Among those with CKD, diabetic nephropathy is the leading cause of end-stage renal disease. This is a retrospective study examining the effect of long-term use of dipeptidyl peptidase-4 (DPP-4) inhibitors on all-cause mortality and progression of renal disease in the veteran population. METHODS: Data was extracted using the Veterans Administration Informatics and Computing Infrastructure. A large cohort of veterans diagnosed with type 2 diabetes mellitus were used to identify patients on DPP-4 inhibitors and without DPP-4 inhibitors. Groups were compared to determine the effect of DPP-4 inhibitors on the progression of CKD and all-cause mortality. Data were analyzed using SAS. RESULTS: Subjects in the treatment group (n = 40 558) had baseline variables (age, body mass index, race) similar to the control group (n = 40 558). Diabetes control improved in the treatment group (HgbA1c, 8.3% [67 mmol/mol] to 7.8% [62 mmol/mol]; P < .001) but not in the control group (HgbA1c, 7.4% [57 mmol/mol] to 7.3% [56 mmol/mol]). New diagnoses of heart failure and coronary artery bypass grafts were clinically significant (odds ratios = 0.66 and 0.52). No change in progression of CKD was seen in either group. All-cause mortality was reduced by 59%. CONCLUSION: We conclude that DPP-4 inhibitors are associated with a significant reduction in all-cause mortality independent of glucose control, albeit with no clear cause, including obtainable cardiovascular outcomes. Our data is consistent with prior trials in that DPP-4 inhibitors did not show a significant change in serum creatinine or microalbuminuria.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Hipoglicemiantes , Insuficiência Renal Crônica/tratamento farmacológico , Veteranos , Idoso , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/mortalidade , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/mortalidade , Estudos Retrospectivos , Estados Unidos/epidemiologia
5.
J Mol Struct ; 12472022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34776532

RESUMO

Donepezil (DNPZ) is one of the few FDA-approved widely used medication in the clinical care of Alzheimer's disease (AD) patients. To investigate the effect of geometry and to find the significance of an enol form if any in DNPZ on acetylcholinesterase (AChE) inhibition, we changed the tetrahedral geometry of DNPZ to planar trigonal pyramidal geometry by replacing the α-carbon atom next to ketone functionality with a nitrogen atom. To mimic 1-indanone in DNPZ, we selected 1-isoindolinone framework to synthesize 25 new DNPZ derivatives and characterized using 1H NMR, 13C NMR and ESI-MS spectroscopy methods. Drug likeliness profile for each compound was predicted using Molinspiration online software following Lipinski's rule. Commercially available assay kits were used to measure AChE and butyrylcholinesterase (BuChE) inhibitory effects. NIH/3T3 mouse embryonic fibroblast cell line was used to measure cytotoxic and proliferation effects using LDH and MTT assay, respectively. Compound #20 was selected for comparative computational docking, modelling and physicochemical studies. Our results show that DNPZ with tetrahedral geometry has 3-fold higher AChE inhibition as compared to compound #20 with planar trigonal pyramidal geometry. Our approach may be useful as a novel indirect method to study the significance of the enol form in DNPZ (or similar compounds), since constant interconversion between the keto and enol forms does not permit a direct determination of the effect of the enol form of DNPZ in vivo. Overall, we conclude that the tetrahedral is a better fit and any change in geometry significantly drives down the cholinesterase inhibitory effect of DNPZ.

6.
Lab Invest ; 101(6): 745-759, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33495575

RESUMO

Multiple genome-wide association studies (GWAS) have linked Forkhead Box F1 (FOXF1) to Barrett's esophagus (BE). Understanding whether FOXF1 is involved in initiation of Barrett's metaplasia could allow FOXF1 to be used for risk stratification and for therapy. Two-dimensional cell cultures and three-dimensional organoid cultures and well-annotated human biopsies were used to determine the role of FOXF1 in BE pathogenesis. Multiple established esophageal squamous and BE cell lines were tested in gain- and loss-of-function studies. Initiation of a BE-like metaplastic change was evaluated by measuring characteristic cytokeratins and global gene expression profiling and by culturing organoids. Epithelial-mesenchymal transition (EMT) was evaluated by immunostaining for E-cadherin, vimentin and Snail, and by cell motility assay. Columnar esophageal epithelium of BE patients exhibited higher expression of FOXF1 compared to normal squamous esophageal epithelium of GERD patients (P < 0.001). Acidic bile salts induced nuclear FOXF1 in esophageal squamous cells. FOXF1 overexpression in normal esophageal squamous cells: (a) increased columnar cytokeratins and decreased squamous cytokeratins, (b) converted squamous organoids to glandular organoids, and (c) switched global gene profiles to resemble that of human BE epithelium (P = 2.1685e - 06 for upregulated genes and P = 8.3378e - 09 for downregulated genes). FOXF1 inhibition in BE cell lines led to loss of BE differentiation markers, CK7, and mucin 2. Also, FOXF1 induced EMT and promoted cell motility in normal esophageal squamous epithelial cells. FOXF1-induced genes mapped to pathways such as Cancer, Cellular Assembly and Organization, DNA Replication, Recombination, and Repair. In conclusion, FOXF1 promotes a BE-like columnar phenotype and cell motility in esophageal squamous epithelial cells, which may have a critical role in BE development. FOXF1 should be studied further as a biomarker for BE and as a target for BE treatment.


Assuntos
Esôfago de Barrett/etiologia , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead/metabolismo , Idoso , Esôfago de Barrett/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Esôfago/citologia , Esôfago/metabolismo , Humanos , Pessoa de Meia-Idade
7.
Bioorg Chem ; 108: 104681, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33571811

RESUMO

Chalcone [(E)-1,3-diphenyl-2-propene-1-one], a small molecule with α, ß unsaturated carbonyl group is a precursor or component of many natural flavonoids and isoflavonoids. It is one of the privileged structures in medicinal chemistry. It possesses a wide range of biological activities encouraging many medicinal chemists to study this scaffold for its usefulness to oncology, infectious diseases, virology and neurodegenerative diseases including Alzheimer's disease (AD). Small molecular size, convenient and cost-effective synthesis, and flexibility for modifications to modulate lipophilicity suitable for blood brain barrier (BBB) permeability make chalcones a preferred candidate for their therapeutic and diagnostic potential in AD. This review summarizes and highlights the importance of chalcone and its analogs as single target small therapeutic agents, multi-target directed ligands (MTDLs) as well as molecular imaging agents for AD. The information summarized here will guide many medicinal chemist and researchers involved in drug discovery to consider chalcone as a potential scaffold for the development of anti-AD agents including theranostics.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/tratamento farmacológico , Chalcona/química , Chalcona/uso terapêutico , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Chalcona/análogos & derivados , Humanos , Estrutura Molecular
8.
J Biol Chem ; 294(32): 11952-11959, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31248987

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into adipocytes, chondrocytes, or osteocytes. MSCs secrete an array of cytokines and express the LIFRß (leukemia inhibitory factor receptor) chain on their surface. Mutations in the gene coding for LIFRß lead to a syndrome with altered bone metabolism. LIFRß is one of the signaling receptor chains for cardiotrophin-like cytokine (CLCF1), a neurotrophic factor known to modulate B and myeloid cell functions. We investigated its effect on MSCs induced to differentiate into osteocytes in vitro Our results indicate that CLCF1 binds mouse MSCs, triggers STAT1 and -3 phosphorylation, inhibits the up-regulation of master genes involved in the control of osteogenesis, and markedly prevents osteoblast generation and mineralization. This suggests that CLCF1 could be a target for therapeutic intervention with agents such as cytokine traps or blocking mAbs in bone diseases such as osteoporosis.


Assuntos
Diferenciação Celular , Citocinas/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Animais , Células da Medula Óssea/citologia , Células Cultivadas , Citocinas/genética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Osteoblastos/metabolismo , Osteogênese , Fosforilação , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Regulação para Cima
9.
Am J Physiol Renal Physiol ; 319(2): F312-F322, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32628542

RESUMO

The ultrafiltrate flow over the major processes and cell body generates fluid flow shear stress (FFSS) on podocytes. Hyperfiltration-associated increase in FFSS can lead to podocyte injury and detachment. Previously, we showed that FFSS-induced upregulation of the cyclooxygenase 2 (COX2)-PGE2-prostaglandin E receptor 2 (EP2) axis in podocytes activates Akt-glycogen synthase kinase-3ß-ß-catenin and MAPK/ERK signaling in response to FFSS. Integrative MultiOmics Pathway Resolution (IMPRes) is a new bioinformatic tool that enables simultaneous time-series analysis of more than two groups to identify pathways and molecular connections. In the present study, we used previously characterized COX2 [prostaglandin-endoperoxide synthase 2 (Ptgs2)], EP2 (Ptger2), and ß1-catenin (Ctnnb1) as "seed genes" from an array data set of four groups analyzed over a time course. The 3 seed genes shared 7 pathways and 50 genes of 14 pathways and 89 genes identified by IMPRes. A composite of signaling pathways highlighted the temporal molecular connections during mechanotransduction signaling in FFSS-treated podocytes. We investigated the "proteoglycans in cancer" and "galactose metabolism" pathways predicted by IMPRes. A custom-designed PCR array validated 60.7% of the genes predicted by IMPRes analysis, including genes for the above-named pathways. Further validation using Western blot analysis showed increased expression of phosho-Erbb2, phospho-mammalian target of rapamycin (mTOR), CD44, and hexokinase II (Hk2); decreased total Erbb2, galactose mutarotase (Galm), and ß-1,4-galactosyltransferase 1 (B4galt1); and unchanged total mTOR and AKT3. These findings corroborate our previously reported results. This study demonstrates the potential of the IMPRes method to identify novel pathways. Identifying the "proteoglycans in cancer" and "galactose metabolism" pathways has generated a lead to study the significance of FFSS-induced glycocalyx remodeling and possible detachment of podocytes from the glomerular matrix.


Assuntos
Podócitos/metabolismo , Proteoglicanas/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Estresse Mecânico , Ativação Transcricional/fisiologia , Ciclo-Oxigenase 2/metabolismo , Glomérulos Renais/metabolismo , Mecanotransdução Celular/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
10.
Prostaglandins Other Lipid Mediat ; 146: 106403, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31838197

RESUMO

INTRODUCTION: Hyperfiltration is a major contributor to progression of chronic kidney disease (CKD) in diabetes, obesity and in individuals with solitary functioning kidney (SFK). We have proposed hyperfiltration-induced injury as a continuum of overlapping glomerular changes caused by increased biomechanical forces namely, fluid flow shear stress (FFSS) and tensile stress. We have shown that FFSS is elevated in animals with SFK and, it upregulates prostaglandin E2 (PGE2), cyclooxygenase-2 and PGE2 receptor EP2 in cultured podocytes and in uninephrectomized mice. We conceptualized urinary PGE2 as a biomarker of early effects of hyperfiltration-induced injury preceding microalbuminuria in individuals with SFK. We studied children with SFK to validate our hypothesis. METHODS: Urine samples from children with SFK and controls were analyzed for PGE2, albumin (glomerular injury biomarker) and epidermal growth factor (EGF, tubular injury biomarker). Age, gender, and Z-scores for height, weight, BMI, and blood pressure were obtained. RESULTS: Children with SFK were comparable to controls except for lower BMI Z-scores. The median values were elevated in SFK compared to control for urine PGE2 [9.1 (n = 57) vs. 5.7 (n = 72), p = 0.009] ng/mgCr and albumin [7.6 (n = 40) vs. 7.0 (n = 41), p = 0.085] µg/mgCr, but not for EGF [20098 (n = 44) vs. 18637 (n = 44), p = 0.746] pg/mgCr. Significant increase in urinary PGE2 (p = 0.024) and albumin (p = 0.019) but not EGF (p = 0.412) was observed using additional regression modeling. These three urinary analytes were independent of each other. CONCLUSION: Increased urinary PGE2 from elevated SNGFR and consequently increased FFSS during early stage of CKD precedes overt microalbuminuria and is a biomarker for early hyperfiltration-induced injury in individuals with SFK.


Assuntos
Dinoprostona/urina , Taxa de Filtração Glomerular , Glomérulos Renais/metabolismo , Insuficiência Renal Crônica/urina , Adolescente , Biomarcadores/urina , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem
11.
J Immunol ; 201(8): 2462-2471, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30209193

RESUMO

CLCF1 is a neurotrophic and B cell-stimulating factor belonging to the IL-6 family. Mutations in the gene coding for CLCF1 or its secretion partner CRLF1 lead to the development of severe phenotypes, suggesting important nonredundant roles in development, metabolism, and immunity. Although CLCF1 was shown to promote the proliferation of the myeloid cell line M1, its roles on myeloid activation remain underinvestigated. We characterized the effects of CLCF1 on myeloid cells with a focus on monocyte-macrophage and macrophage-foam cell differentiations. CLCF1 injections in mice resulted in a significant increase in CD11b+ circulating cells, including proinflammatory monocytes. Furthermore, CLCF1 activated STAT3 phosphorylation in bone marrow CD11b+ cells and in bone marrow-derived macrophages (BMDM). BMDM stimulated with CLCF1 produced a large array of proinflammatory factors comprising IL-6, IL-9, G-CSF, GM-CSF, IL-1ß, IL-12, CCL5, and CX3CL1. The pattern of cytokines and chemokines released by CLCF1-treated BMDM led us to investigate the role of CLCF1 in foam cell formation. When pretreated with CLCF1, BMDM presented a marked SR-A1 upregulation, an increase in acetylated-low-density lipoprotein uptake, and an elevated triglyceride accumulation. CLCF1-induced SR-A1 upregulation, triglyceride accumulation, and acetylated-low-density lipoprotein uptake could be prevented using ruxolitinib, a JAK inhibitor, indicating that the effects of the cytokine on myeloid cells result from activation of the canonical JAK/STAT signaling pathway. Our data reveal novel biological roles for CLCF1 in the control of myeloid function and identify this cytokine as a strong inducer of macrophage-foam cell transition, thus bringing forward a new potential therapeutic target for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Células Espumosas/fisiologia , Macrófagos/fisiologia , Animais , Aterosclerose/patologia , Células Cultivadas , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mielopoese , Fatores de Transcrição STAT , Receptores Depuradores Classe A/metabolismo , Transdução de Sinais
12.
Int J Mol Sci ; 21(23)2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291316

RESUMO

Non-small-cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR-targeted tyrosine kinase inhibitors (TKIs). Treatment resistance remains the primary obstacle to the successful treatment of NSCLC. Although drug resistance mechanisms have been studied extensively in NSCLC, the regulation of these mechanisms has not been completely understood. Recently, increasing numbers of microRNAs (miRNAs) are implicated in EGFR-TKI resistance, indicating that miRNAs may serve as novel targets and may hold promise as predictive biomarkers for anti-EGFR therapy. MicroRNA-506 (miR-506) has been identified as a tumor suppressor in many cancers, including lung cancer; however, the role of miR-506 in lung cancer chemoresistance has not yet been addressed. Here we report that miR-506-3p expression was markedly reduced in erlotinib-resistant (ER) cells. We identified Sonic Hedgehog (SHH) as a novel target of miR-506-3p, aberrantly activated in ER cells. The ectopic overexpression of miR-506-3p in ER cells downregulates SHH signaling, increases E-cadherin expression, and inhibits the expression of vimentin, thus counteracting the epithelial-mesenchymal transition (EMT)-mediated chemoresistance. Our results advanced our understanding of the molecular mechanisms underlying EGFR-TKI resistance and indicated that the miR-506/SHH axis might represent a novel therapeutic target for future EGFR mutated lung cancer treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/genética , MicroRNAs/genética , Antineoplásicos/toxicidade , Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Cloridrato de Erlotinib/toxicidade , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/toxicidade , Transdução de Sinais
13.
J Biol Chem ; 292(16): 6644-6656, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28280243

RESUMO

Epstein-Barr virus-induced gene 3 (EBI3) is a subunit of the composite cytokines IL-27 and IL-35. Both have beneficial functions or effects in models of infectious and autoimmune diseases. This suggests that administration of EBI3 could be therapeutically useful by binding free p28 and p35 to generate IL-27 and IL-35. IL-27- and IL-35-independent functions of EBI3 could compromise its therapeutic uses. We therefore assessed the effects of EBI3 on cytokine receptor-expressing cells. We observed that EBI3 activates STAT3 and induces the proliferation of the IL-6-dependent B9 mouse plasmacytoma cell line. Analyses using blocking mAbs and Ba/F3 transfectants expressing gp130 indicate that EBI3 activity was linked to its capacity to mediate IL-6 trans-signaling, albeit less efficiently than soluble IL-6Rα. In line with this interpretation, co-immunoprecipitation and SPR experiments indicated that EBI3 binds IL-6. An important pro-inflammatory function of IL-6 trans-signaling is to activate blood vessel endothelial cells. We observed that EBI3 in combination with IL-6 could induce the expression of chemokines by human venal endothelial cells. Our results indicate that EBI3 can promote pro-inflammatory IL-6 functions by mediating trans-signaling. These unexpected observations suggest that use of EBI3 as a therapeutic biologic for autoimmune diseases will likely require co-administration of soluble gp130 to prevent the side effects associated with IL-6 trans-signaling. Together with previous studies that demonstrated activation of IL-6R by p28 (IL-30), new findings further suggest a complex interrelation between IL-27 and IL-6.


Assuntos
Interleucina-6/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores de Citocinas/metabolismo , Transdução de Sinais , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas/metabolismo , Receptor gp130 de Citocina/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Plasmocitoma/metabolismo , Ligação Proteica , Receptores de Interleucina-6/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
14.
Am J Physiol Renal Physiol ; 314(1): F22-F34, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28877882

RESUMO

Recently, we and others have found that hyperfiltration-associated increase in biomechanical forces, namely, tensile stress and fluid flow shear stress (FFSS), can directly and distinctly alter podocyte structure and function. The ultrafiltrate flow over the major processes and cell body generates FFSS to podocytes. Our previous work suggests that the cyclooxygenase-2 (COX-2)-PGE2-PGE2 receptor 2 (EP2) axis plays an important role in mechanoperception of FFSS in podocytes. To address mechanotransduction of the perceived stimulus through EP2, cultured podocytes were exposed to FFSS (2 dyn/cm2) for 2 h. Total RNA from cells at the end of FFSS treatment, 2-h post-FFSS, and 24-h post-FFSS was used for whole exon array analysis. Differentially regulated genes ( P < 0.01) were analyzed using bioinformatics tools Enrichr and Ingenuity Pathway Analysis to predict pathways/molecules. Candidate pathways were validated using Western blot analysis and then further confirmed to be resulting from a direct effect of PGE2 on podocytes. Results show that FFSS-induced mechanotransduction as well as exogenous PGE2 activate the Akt-GSK3ß-ß-catenin (Ser552) and MAPK/ERK but not the cAMP-PKA signal transduction cascades. These pathways are reportedly associated with FFSS-induced and EP2-mediated signaling in other epithelial cells as well. The current regimen for treating hyperfiltration-mediated injury largely depends on targeting the renin-angiotensin-aldosterone system. The present study identifies specific transduction mechanisms and provides novel information on the direct effect of FFSS on podocytes. These results suggest that targeting EP2-mediated signaling pathways holds therapeutic significance for delaying progression of chronic kidney disease secondary to hyperfiltration.


Assuntos
Dinoprostona/metabolismo , Mecanotransdução Celular/fisiologia , Podócitos/citologia , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Estresse Mecânico , Animais , Feminino , Camundongos , Insuficiência Renal Crônica/terapia , Transdução de Sinais/fisiologia
15.
Nephrol Dial Transplant ; 32(5): 759-765, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339567

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) including solitary kidney constitute the main cause of progressive chronic kidney disease (CKD) in children. Children born with CAKUT develop signs of CKD only during adolescence and do not respond to renin-angiotensin-aldosterone system blockers. Early cellular changes underlying CKD progression to end-stage renal disease by early adulthood are not well understood. The mechanism of maladaptive hyperfiltration that occurs from loss of functional nephrons, including solitary kidney, is not clear. We re-examine the phenomenon of hyperfiltration in the context of biomechanical forces with special reference to glomerular podocytes. Capillary stretch exerts tensile stress on podocytes through the glomerular basement membrane. The flow of ultrafiltrate over the cell surface directly causes fluid flow shear stress (FFSS) on podocytes. FFSS on the podocyte surface increases 1.5- to 2-fold in animal models of solitary kidney and its effect on podocytes is a subject of ongoing research. Podocytes (i) are mechanosensitive to tensile and shear forces, (ii) use prostaglandin E2, angiotensin-II or nitric oxide for mechanoperception and (iii) use specific signaling pathways for mechanotransduction. We discuss (i) the nature of and differences in cellular responses to biomechanical forces, (ii) methods to study biomechanical forces and (iii) effects of biomechanical forces on podocytes and glomeruli. Future studies on FFSS will likely identify novel targets for strategies for early intervention to complement and strengthen the current regimen for treating children with CAKUT.


Assuntos
Taxa de Filtração Glomerular , Insuficiência Renal Crônica/fisiopatologia , Doenças Urológicas/fisiopatologia , Animais , Fenômenos Biomecânicos , Humanos , Insuficiência Renal Crônica/congênito , Transdução de Sinais , Doenças Urológicas/congênito
16.
Artigo em Inglês | MEDLINE | ID: mdl-28108282

RESUMO

Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a significant role of COX-2 generated PGE2 and its receptors in response to tensile stress and FFSS. Preliminary observations show increased urinary PGE2 in children born with a solitary kidney. FFSS-induced COX2-PGE2-EP2 signaling provides an opportunity to identify targets and, for developing novel agents to complement currently available treatment.


Assuntos
Eicosanoides/metabolismo , Glomérulos Renais/lesões , Glomérulos Renais/fisiologia , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Dinoprostona/metabolismo , Humanos , Glomérulos Renais/citologia , Glomérulos Renais/metabolismo , Podócitos/metabolismo
17.
Cytokine ; 82: 122-4, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26817395

RESUMO

The incidence of obesity is increasing worldwide. Obesity is accompanied by a chronic inflammatory state that increases the risk of metabolic diseases such as insulin-resistance and type 2 diabetes. Over the past two decades, interest in immunomodulatory cytokines as potential mediators and/or targets for treatment or prevention of obesity and metabolic syndrome has increased. In this review, we summarize studies that revealed the effects of LIF family cytokines on adipose tissue, energy expenditure and food intake, highlighting the importance of gp130/LIFRß signaling in obesity and obesity-related metabolic diseases.


Assuntos
Fator Neurotrófico Ciliar/imunologia , Diabetes Mellitus Tipo 2/imunologia , Fator Inibidor de Leucemia/imunologia , Síndrome Metabólica/imunologia , Obesidade/imunologia , Animais , Diabetes Mellitus Tipo 2/patologia , Humanos , Síndrome Metabólica/patologia , Obesidade/patologia , Fatores de Risco
18.
Eur Heart J ; 36(40): 2706-15, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26248567

RESUMO

AIMS: There is a significant uncertainty regarding the effect of testosterone replacement therapy (TRT) on cardiovascular (CV) outcomes including myocardial infarction (MI) and stroke. The aim of this study was to examine the relationship between normalization of total testosterone (TT) after TRT and CV events as well as all-cause mortality in patients without previous history of MI and stroke. METHODS AND RESULTS: We retrospectively examined 83 010 male veterans with documented low TT levels. The subjects were categorized into (Gp1: TRT with resulting normalization of TT levels), (Gp2: TRT without normalization of TT levels) and (Gp3: Did not receive TRT). By utilizing propensity score-weighted Cox proportional hazard models, the association of TRT with all-cause mortality, MI, stroke, and a composite endpoint was compared between these groups. The all-cause mortality [hazard ratio (HR): 0.44, confidence interval (CI) 0.42-0.46], risk of MI (HR: 0.76, CI 0.63-0.93), and stroke (HR: 0.64, CI 0.43-0.96) were significantly lower in Gp1 (n = 43 931, median age = 66 years, mean follow-up = 6.2 years) vs. Gp3 (n = 13 378, median age = 66 years, mean follow-up = 4.7 years) in propensity-matched cohort. Similarly, the all-cause mortality (HR: 0.53, CI 0.50-0.55), risk of MI (HR: 0.82, CI 0.71-0.95), and stroke (HR: 0.70, CI 0.51-0.96) were significantly lower in Gp1 vs. Gp2 (n = 25 701, median age = 66 years, mean follow-up = 4.6 years). There was no difference in MI or stroke risk between Gp2 and Gp3. CONCLUSION: In this large observational cohort with extended follow-up, normalization of TT levels after TRT was associated with a significant reduction in all-cause mortality, MI, and stroke.


Assuntos
Infarto do Miocárdio/mortalidade , Testosterona/sangue , Idoso , Androgênios/administração & dosagem , Vias de Administração de Medicamentos , Terapia de Reposição Hormonal/mortalidade , Humanos , Incidência , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Infarto do Miocárdio/prevenção & controle , Estudos Prospectivos , Estudos Retrospectivos , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/mortalidade , Acidente Vascular Cerebral/prevenção & controle , Testosterona/administração & dosagem , Testosterona/deficiência , Estados Unidos/epidemiologia
19.
Am J Physiol Renal Physiol ; 309(12): F1049-59, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26447220

RESUMO

This study describes a high-throughput fluorescence dilution technique to measure the albumin reflection coefficient (σAlb) of isolated glomeruli. Rats were injected with FITC-dextran 250 (75 mg/kg), and the glomeruli were isolated in a 6% BSA solution. Changes in the fluorescence of the glomerulus due to water influx in response to an imposed oncotic gradient was used to determine σAlb. Adjustment of the albumin concentration of the bath from 6 to 5, 4, 3, and 2% produced a 10, 25, 35, and 50% decrease in the fluorescence of the glomeruli. Pretreatment of glomeruli with protamine sulfate (2 mg/ml) or TGF-ß1 (10 ng/ml) decreased σAlb from 1 to 0.54 and 0.48, respectively. Water and solute movement were modeled using Kedem-Katchalsky equations, and the measured responses closely fit the predicted behavior, indicating that loss of albumin by solvent drag or diffusion is negligible compared with the movement of water. We also found that σAlb was reduced by 17% in fawn hooded hypertensive rats, 33% in hypertensive Dahl salt-sensitive (SS) rats, 26% in streptozotocin-treated diabetic Dahl SS rats, and 21% in 6-mo old type II diabetic nephropathy rats relative to control Sprague-Dawley rats. The changes in glomerular permeability to albumin were correlated with the degree of proteinuria in these strains. These findings indicate that the fluorescence dilution technique can be used to measure σAlb in populations of isolated glomeruli and provides a means to assess the development of glomerular injury in hypertensive and diabetic models.


Assuntos
Albuminas/análise , Nefropatias Diabéticas/urina , Glomérulos Renais/fisiopatologia , Animais , Diabetes Mellitus Experimental , Fluorescência , Técnicas de Diluição do Indicador , Glomérulos Renais/metabolismo , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Proteinúria/induzido quimicamente , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Estreptozocina
20.
Prostaglandins Other Lipid Mediat ; 116-117: 88-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25447342

RESUMO

Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol.


Assuntos
Álcool Desidrogenase/metabolismo , Etanol/farmacologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Nefropatias/prevenção & controle , Podócitos/metabolismo , Animais , Linhagem Celular Transformada , Citocromo P-450 CYP2E1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450 , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos , Podócitos/citologia , Inibidores da Síntese de Proteínas/efeitos adversos , Inibidores da Síntese de Proteínas/farmacologia , Puromicina/efeitos adversos , Puromicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA