Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 615(7953): 734-741, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890236

RESUMO

The third intracellular loop (ICL3) of the G protein-coupled receptor (GPCR) fold is important for the signal transduction process downstream of receptor activation1-3. Despite this, the lack of a defined structure of ICL3, combined with its high sequence divergence among GPCRs, complicates characterization of its involvement in receptor signalling4. Previous studies focusing on the ß2 adrenergic receptor (ß2AR) suggest that ICL3 is involved in the structural process of receptor activation and signalling5-7. Here we derive mechanistic insights into the role of ICL3 in ß2AR signalling, observing that ICL3 autoregulates receptor activity through a dynamic conformational equilibrium between states that block or expose the receptor's G protein-binding site. We demonstrate the importance of this equilibrium for receptor pharmacology, showing that G protein-mimetic effectors bias the exposed states of ICL3 to allosterically activate the receptor. Our findings additionally reveal that ICL3 tunes signalling specificity by inhibiting receptor coupling to G protein subtypes that weakly couple to the receptor. Despite the sequence diversity of ICL3, we demonstrate that this negative G protein-selection mechanism through ICL3 extends to GPCRs across the superfamily, expanding the range of known mechanisms by which receptors mediate G protein subtype selective signalling. Furthermore, our collective findings suggest ICL3 as an allosteric site for receptor- and signalling pathway-specific ligands.


Assuntos
Receptores Adrenérgicos beta 2 , Transdução de Sinais , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Ligantes , Sítio Alostérico , Conformação Proteica
2.
Injury ; 55(6): 111472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460480

RESUMO

Spinal Cord Injury (SCI) is a condition leading to inflammation, edema, and dysfunction of the spinal cord, most commonly due to trauma, tumor, infection, or vascular disturbance. Symptoms include sensory and motor loss starting at the level of injury; the extent of damage depends on injury severity as detailed in the ASIA score. In the acute setting, maintaining mean arterial pressure (MAP) higher than 85 mmHg for up to 7 days following injury is preferred; although caution must be exercised when using vasopressors such as phenylephrine due to serious side effects such as pulmonary edema and death. Decompression surgery (DS) may theoretically relieve edema and reduce intraspinal pressure, although timing of surgery remains a matter of debate. Methylprednisolone (MP) is currently used due to its ability to reduce inflammation but more recent studies question its clinical benefits, especially with inconsistency in recommending it nationally and internationally. The choice of MP is further complicated by conflicting evidence for optimal timing to initiate treatment, and by the reported observation that higher doses are correlated with increased risk of complications. Thyrotropin-releasing hormone may be beneficial in less severe injuries. Finally, this review discusses many options currently being researched and have shown promising pre-clinical results.


Assuntos
Descompressão Cirúrgica , Metilprednisolona , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/complicações , Descompressão Cirúrgica/métodos , Metilprednisolona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA