Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2317756121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38300868

RESUMO

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Hiperfosfatemia , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Ductos Biliares Intra-Hepáticos/metabolismo , Diarreia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
2.
J Am Chem Soc ; 138(30): 9597-610, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27347808

RESUMO

Iron porphyrin carbenes constitute a new frontier of species with considerable synthetic potential. Exquisitely engineered myoglobin and cytochrome P450 enzymes can generate these complexes and facilitate the transformations they mediate. The current work harnesses density functional theoretical methods to provide insight into the electronic structure, formation, and N-H insertion reactivity of an iron porphyrin carbene, [Fe(Por)(SCH3)(CHCO2Et)](-), a model of a complex believed to exist in an experimentally studied artificial metalloenzyme. The ground state electronic structure of the terminal form of this complex is an open-shell singlet, with two antiferromagnetically coupled electrons residing on the iron center and carbene ligand. As we shall reveal, the bonding properties of [Fe(Por)(SCH3)(CHCO2Et)](-) are remarkably analogous to those of ferric heme superoxide complexes. The carbene forms by dinitrogen loss from ethyl diazoacetate. This reaction occurs preferentially through an open-shell singlet transition state: iron donates electron density to weaken the C-N bond undergoing cleavage. Once formed, the iron porphyrin carbene accomplishes N-H insertion via nucleophilic attack. The resulting ylide then rearranges, using an internal carbonyl base, to form an enol that leads to the product. The findings rationalize experimentally observed reactivity trends reported in artificial metalloenzymes employing iron porphyrin carbenes. Furthermore, these results suggest a possible expansion of enzymatic substrate scope, to include aliphatic amines. Thus, this work, among the first several computational explorations of these species, contributes insights and predictions to the surging interest in iron porphyrin carbenes and their synthetic potential.

3.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034777

RESUMO

The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, i.e., the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELP). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.

4.
Cancer Discov ; 13(9): 2012-2031, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37270847

RESUMO

Oncogenic activation of fibroblast growth factor receptor 2 (FGFR2) drives multiple cancers and represents a broad therapeutic opportunity, yet selective targeting of FGFR2 has not been achieved. Although the clinical efficacy of pan-FGFR inhibitors (pan-FGFRi) validates FGFR2 driver status in FGFR2 fusion-positive intrahepatic cholangiocarcinoma, their benefit is limited by incomplete target coverage due to FGFR1- and FGFR4-mediated toxicities (hyperphosphatemia and diarrhea, respectively) and the emergence of FGFR2 resistance mutations. RLY-4008 is a highly selective, irreversible FGFR2 inhibitor designed to overcome these limitations. In vitro, RLY-4008 demonstrates >250- and >5,000-fold selectivity over FGFR1 and FGFR4, respectively, and targets primary alterations and resistance mutations. In vivo, RLY-4008 induces regression in multiple xenograft models-including models with FGFR2 resistance mutations that drive clinical progression on current pan-FGFRi-while sparing FGFR1 and FGFR4. In early clinical testing, RLY-4008 induced responses without clinically significant off-isoform FGFR toxicities, confirming the broad therapeutic potential of selective FGFR2 targeting. SIGNIFICANCE: Patients with FGFR2-driven cancers derive limited benefit from pan-FGFRi due to multiple FGFR1-4-mediated toxicities and acquired FGFR2 resistance mutations. RLY-4008 is a highly selective FGFR2 inhibitor that targets primary alterations and resistance mutations and induces tumor regression while sparing other FGFRs, suggesting it may have broad therapeutic potential. See related commentary by Tripathi et al., p. 1964. This article is featured in Selected Articles from This Issue, p. 1949.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Mutação , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico
5.
Commun Biol ; 4(1): 338, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712696

RESUMO

The influenza B M2 protein forms a water-filled tetrameric channel to conduct protons across the lipid membrane. To understand how channel water mediates proton transport, we have investigated the water orientation and dynamics using solid-state NMR spectroscopy and molecular dynamics (MD) simulations. 13C-detected water 1H NMR relaxation times indicate that water has faster rotational motion in the low-pH open channel than in the high-pH closed channel. Despite this faster dynamics, the open-channel water shows higher orientational order, as manifested by larger motionally-averaged 1H chemical shift anisotropies. MD simulations indicate that this order is induced by the cationic proton-selective histidine at low pH. Furthermore, the water network has fewer hydrogen-bonding bottlenecks in the open state than in the closed state. Thus, faster dynamics and higher orientational order of water molecules in the open channel establish the water network structure that is necessary for proton hopping.


Assuntos
Vírus da Influenza B/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Proteínas Virais/metabolismo , Água/metabolismo , Histidina , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Vírus da Influenza B/genética , Canais Iônicos/genética , Simulação de Dinâmica Molecular , Espectroscopia de Prótons por Ressonância Magnética , Prótons , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA