Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Appl ; 31(2): e02233, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33048393

RESUMO

Coastal wetlands intercept significant amounts of nitrogen (N) from watersheds, especially when surrounding land cover is dominated by agriculture and urban development. Through plant uptake, soil immobilization, and denitrification, wetlands can remove excess N from flow-through water sources and mitigate eutrophication of connected aquatic ecosystems. Excess N can also change plant community composition in wetlands, including communities threatened by invasive species. Understanding how variable hydrology and N loading impact wetland N removal and community composition can help attain desired management outcomes, including optimizing N removal and/or preventing invasion by nonnatives. By using a dynamic, process-based ecosystem simulation model, we are able to simulate various levels of hydrology and N loading that would otherwise be difficult to manipulate. We investigate in silico the effects of hydroperiod, hydrologic residence time, N loading, and the NH4+ : NO3- ratio on both N removal and the invasion success of two nonnative species (Typha × glauca or Phragmites australis) in temperate freshwater coastal wetlands. We found that, when residence time increased, annual N removal increased up to 10-fold while longer hydroperiods also increased N removal, but only when residence time was >10 d and N loading was >30 g N·m-2 ·yr-1 . N removal efficiency also increased with increasing residence time and hydroperiod, but was less affected by N loading. However, longer hydrologic residence time increased vulnerability of wetlands to invasion by both invasive plants at low to medium N loading rates where native communities are typically more resistant to invasion. This suggests a potential trade-off between ecosystem services related to nitrogen removal and wetland invasibility. These results help elucidate complex interactions of community composition, N loading and hydrology on N removal, helping managers to prioritize N removal when N loading is high or controlling plant invasion in more vulnerable wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Água Doce , Hidrologia , Nitrogênio/análise
2.
Ecol Lett ; 21(11): 1681-1692, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30141246

RESUMO

Foundation species enhance biodiversity and multifunctionality across many systems; however, whether foundation species patch configuration mediates their ecological effects is unknown. In a 6-month field experiment, we test which attributes of foundation species patch configuration - i.e. patch size, total patch area, perimeter, area-perimeter ratio, or connectivity - control biodiversity, stability and multifunctionality by adding a standardised density of mussel foundation species in patches of 1, 5, 10, 30, 60, 90 or 180 individuals to a southeastern US salt marsh. Over 67% of response variables increased with clustering of mussels, responses that were driven by increases in area-perimeter ratio (33%), decreases in perimeter (29%), or increases in patch size (5%), suggesting sensitivity to external stressors and/or dependence on foundation species-derived niche availability and segregation. Thus, mussel configuration - by controlling the relative distribution of multidimensional patch interior and edge niche space - critically modulates this foundation species' effects on ecosystem structure, stability and function.


Assuntos
Biodiversidade , Poaceae , Áreas Alagadas , Ecologia , Ecossistema , Humanos
3.
Nat Commun ; 12(1): 6290, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725328

RESUMO

Invasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapes by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances.


Assuntos
Comportamento Animal , Bivalves/crescimento & desenvolvimento , Ecossistema , Desenvolvimento Vegetal/fisiologia , Poaceae/crescimento & desenvolvimento , Simbiose , Animais , Conservação dos Recursos Naturais/métodos , Suínos , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA