Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(1): e3001946, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719873

RESUMO

Large carnivores have long fascinated human societies and have profound influences on ecosystems. However, their conservation represents one of the greatest challenges of our time, particularly where attacks on humans occur. Where human recreational and/or livelihood activities overlap with large carnivore ranges, conflicts can become particularly serious. Two different scenarios are responsible for such overlap: In some regions of the world, increasing human populations lead to extended encroachment into large carnivore ranges, which are subject to increasing contraction, fragmentation, and degradation. In other regions, human and large carnivore populations are expanding, thus exacerbating conflicts, especially in those areas where these species were extirpated and are now returning. We thus face the problem of learning how to live with species that can pose serious threats to humans. We collected a total of 5,440 large carnivore (Felidae, Canidae, and Ursidae; 12 species) attacks worldwide between 1950 and 2019. The number of reported attacks increased over time, especially in lower-income countries. Most attacks (68%) resulted in human injuries, whereas 32% were fatal. Although attack scenarios varied greatly within and among species, as well as in different areas of the world, factors triggering large carnivore attacks on humans largely depend on the socioeconomic context, with people being at risk mainly during recreational activities in high-income countries and during livelihood activities in low-income countries. The specific combination of local socioeconomic and ecological factors is thus a risky mix triggering large carnivore attacks on humans, whose circumstances and frequencies cannot only be ascribed to the animal species. This also implies that effective measures to reduce large carnivore attacks must also consider the diverse local ecological and social contexts.


Assuntos
Canidae , Carnívoros , Ursidae , Animais , Humanos , Ecossistema , Conservação dos Recursos Naturais/métodos
2.
J Immunol ; 213(2): 235-243, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38819221

RESUMO

The development of agonists capable of activating the human complement system by binding to the C1 complex presents a novel approach for targeted cell killing. Bispecific nanobodies and Abs can successfully use C1 for this purpose; however, efficacy varies significantly between epitopes, Ab type, and bispecific design. To address this variability, we investigated monomeric agonists of C1 in the form of bispecific nanobodies, which lack Fc domains that lead to oligomerization in Abs. These therefore offer an ideal opportunity to explore the geometric parameters crucial for C1 activation. In this study, we explored the impact of linker length as a metric for Ag and epitope location. DNA nanotechnology and protein engineering allowed us to design linkers with controlled lengths and flexibilities, revealing a critical range of end-to-end distances for optimal complement activation. We discovered that differences in complement activation were not caused by differential C1 activation or subsequent cleavage of C4, but instead impacted C4b deposition and downstream membrane lysis. Considering the importance of Ab class and subclass, this study provides insights into the structural requirements of C1 binding and activation, highlighting linker and hinge engineering as a potential strategy to enhance potency over specific cellular targets. Additionally, using DNA nanotechnology to modify geometric parameters demonstrated the potential for synthetic biology in complement activation. Overall, this research offers valuable insights into the design and optimization of agonists for targeted cell killing through complement activation.


Assuntos
Anticorpos Biespecíficos , Ativação do Complemento , Engenharia de Proteínas , Humanos , Ativação do Complemento/imunologia , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Complemento C1/imunologia , Anticorpos de Domínio Único/imunologia , Epitopos/imunologia , Ligação Proteica , Complemento C4b/imunologia
3.
Proc Natl Acad Sci U S A ; 120(50): e2310666120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048459

RESUMO

Autoantibodies directed against complement component C1q are commonly associated with autoimmune diseases, especially systemic lupus erythematosus. Importantly, these anti-C1q autoantibodies are specific for ligand-bound, solid-phase C1q and do not bind to fluid-phase C1q. In patients with anti-C1q, C1q levels are in the normal range, and the autoantibodies are thus not depleting. To study these human anti-C1q autoantibodies at the molecular level, we isolated C1q-reactive B cells and recombinantly produced nine monoclonal antibodies (mAbs) from four different healthy individuals. The isolated mAbs were of the IgG isotype, contained extensively mutated variable domains, and showed high affinity to the collagen-like region of C1q. The anti-C1q mAbs exclusively bound solid-phase C1q in complex with its natural ligands, including immobilized or antigen-bound IgG, IgM or CRP, and necrotic cells. Competition experiments reveal that at least 2 epitopes, also targeted by anti-C1q antibodies in sera from SLE patients, are recognized. Electron microscopy with hexameric IgG-C1q immune complexes demonstrated that multiple mAbs can interact with a single C1q molecule and identified the region of C1q targeted by these mAbs. The opsonization of immune complexes with anti-C1q greatly enhanced Fc-receptor-mediated phagocytosis but did not increase complement activation. We conclude that human anti-C1q autoantibodies specifically bind neo-epitopes on solid-phase C1q, which results in an increase in Fc-receptor-mediated effector functions that may potentially contribute to autoimmune disease immunopathology.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Autoanticorpos , Complemento C1q , Complexo Antígeno-Anticorpo , Ativação do Complemento , Fagocitose , Epitopos , Imunoglobulina G
4.
Circ Res ; 132(2): 154-166, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36575984

RESUMO

BACKGROUND: Hydrogen sulfide is a critical endogenous signaling molecule that exerts protective effects in the setting of heart failure. Cystathionine γ-lyase (CSE), 1 of 3 hydrogen-sulfide-producing enzyme, is predominantly localized in the vascular endothelium. The interaction between the endothelial CSE-hydrogen sulfide axis and endothelial-mesenchymal transition, an important pathological process contributing to the formation of fibrosis, has yet to be investigated. METHODS: Endothelial-cell-specific CSE knockout and Endothelial cell-CSE overexpressing mice were subjected to transverse aortic constriction to induce heart failure with reduced ejection fraction. Cardiac function, vascular reactivity, and treadmill exercise capacity were measured to determine the severity of heart failure. Histological and gene expression analyses were performed to investigate changes in cardiac fibrosis and the activation of endothelial-mesenchymal transition. RESULTS: Endothelial-cell-specific CSE knockout mice exhibited increased endothelial-mesenchymal transition and reduced nitric oxide bioavailability in the myocardium, which was associated with increased cardiac fibrosis, impaired cardiac and vascular function, and worsened exercise performance. In contrast, genetic overexpression of CSE in endothelial cells led to increased myocardial nitric oxide, decreased endothelial-mesenchymal transition and cardiac fibrosis, preserved cardiac and endothelial function, and improved exercise capacity. CONCLUSIONS: Our data demonstrate that endothelial CSE modulates endothelial-mesenchymal transition and ameliorate the severity of pressure-overload-induced heart failure, in part, through nitric oxide-related mechanisms. These data further suggest that endothelium-derived hydrogen sulfide is a potential therapeutic for the treatment of heart failure with reduced ejection fraction.


Assuntos
Insuficiência Cardíaca , Sulfeto de Hidrogênio , Disfunção Ventricular Esquerda , Camundongos , Animais , Sulfeto de Hidrogênio/metabolismo , Células Endoteliais/metabolismo , Óxido Nítrico/metabolismo , Camundongos Knockout , Endotélio Vascular/metabolismo , Fibrose
5.
Proc Natl Acad Sci U S A ; 119(33): e2208144119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939690

RESUMO

Pattern recognition molecules (PRMs) form an important part of innate immunity, where they facilitate the response to infections and damage by triggering processes such as inflammation. The pentraxin family of soluble PRMs comprises long and short pentraxins, with the former containing unique N-terminal regions unrelated to other proteins or each other. No complete high-resolution structural information exists about long pentraxins, unlike the short pentraxins, where there is an abundance of both X-ray and cryoelectron microscopy (cryo-EM)-derived structures. This study presents a high-resolution structure of the prototypical long pentraxin, PTX3. Cryo-EM yielded a 2.5-Å map of the C-terminal pentraxin domains that revealed a radically different quaternary structure compared to other pentraxins, comprising a glycosylated D4 symmetrical octameric complex stabilized by an extensive disulfide network. The cryo-EM map indicated α-helices that extended N terminal of the pentraxin domains that were not fully resolved. AlphaFold was used to predict the remaining N-terminal structure of the octameric PTX3 complex, revealing two long tetrameric coiled coils with two hinge regions, which was validated using classification of cryo-EM two-dimensional averages. The resulting hybrid cryo-EM/AlphaFold structure allowed mapping of ligand binding sites, such as C1q and fibroblast growth factor-2, as well as rationalization of previous biochemical data. Given the relevance of PTX3 in conditions ranging from COVID-19 prognosis, cancer progression, and female infertility, this structure could be used to inform the understanding and rational design of therapies for these disorders and processes.


Assuntos
Proteína C-Reativa , Ativação do Complemento , Componente Amiloide P Sérico , Sítios de Ligação , Proteína C-Reativa/química , Proteína C-Reativa/imunologia , COVID-19/imunologia , Microscopia Crioeletrônica , Feminino , Humanos , Imunidade Inata , Ligantes , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Componente Amiloide P Sérico/química
6.
Annu Rev Physiol ; 83: 39-58, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33074771

RESUMO

Heart failure (HF) is a global pandemic with a poor prognosis after hospitalization. Despite HF syndrome complexities, evidence of significant sympathetic overactivity in the manifestation and progression of HF is universally accepted. Confirmation of this dogma is observed in guideline-directed use of neurohormonal pharmacotherapies as a standard of care in HF. Despite reductions in morbidity and mortality, a growing patient population is resistant to these medications, while off-target side effects lead to dismal patient adherence to lifelong drug regimens. Novel therapeutic strategies, devoid of these limitations, are necessary to attenuate the progression of HF pathophysiology while continuing to reduce morbidity and mortality. Renal denervation is an endovascular procedure, whereby the ablation of renal nerves results in reduced renal afferent and efferent sympathetic nerve activity in the kidney and globally. In this review, we discuss the current state of preclinical and clinical research related to renal sympathetic denervation to treat HF.


Assuntos
Insuficiência Cardíaca/terapia , Simpatectomia/métodos , Animais , Progressão da Doença , Insuficiência Cardíaca/fisiopatologia , Humanos , Rim/fisiopatologia
7.
J Am Chem Soc ; 146(19): 13455-13466, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703132

RESUMO

The classical complement pathway is activated by antigen-bound IgG antibodies. Monomeric IgG must oligomerize to activate complement via the hexameric C1q complex, and hexamerizing mutants of IgG appear as promising therapeutic candidates. However, structural data have shown that it is not necessary to bind all six C1q arms to initiate complement, revealing a symmetry mismatch between C1 and the hexameric IgG complex that has not been adequately explained. Here, we use DNA nanotechnology to produce specific nanostructures to template antigens and thereby spatially control IgG valency. These DNA-nanotemplated IgG complexes can activate complement on cell-mimetic lipid membranes, which enabled us to determine the effect of IgG valency on complement activation without the requirement to mutate antibodies. We investigated this using biophysical assays together with 3D cryo-electron tomography. Our data revealed the importance of interantigen distance on antibody-mediated complement activation, and that the cleavage of complement component C4 by the C1 complex is proportional to the number of ideally spaced antigens. Increased IgG valency also translated to better terminal pathway activation and membrane attack complex formation. Together, these data provide insights into how nanopatterning antigen-antibody complexes influence the activation of the C1 complex and suggest routes to modulate complement activation by antibody engineering. Furthermore, to our knowledge, this is the first time DNA nanotechnology has been used to study the activation of the complement system.


Assuntos
Ativação do Complemento , DNA , Imunoglobulina G , Nanoestruturas , Nanoestruturas/química , Humanos , DNA/química , DNA/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia
8.
Am J Physiol Heart Circ Physiol ; 326(1): H278-H290, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038717

RESUMO

Smoking and high-fat diet (HFD) consumption are two modifiable risk factors for cardiovascular (CV) diseases, and individuals who are overweight or obese due to unhealthy diet are more likely to use tobacco products. In this study, we aim to investigate the combined effects of nicotine (the addictive component of all tobacco products) and HFD on CV health, which are poorly understood. C57BL/6N male mice were placed on either HFD (60 kcal% fat) or regular diet (22 kcal% fat) and exposed to air or nicotine vapor for 10-12 wk. CV function was monitored by echocardiography and radiotelemetry, with left ventricular (LV) catheterization and aortic ring vasoreactivity assays performed at end point. Mice on HFD exhibited increased heart rate and impaired parasympathetic tone, whereas nicotine exposure increased sympathetic vascular tone as evidenced by increased blood pressure (BP) response to ganglionic blockade. Although neither nicotine nor HFD alone or in combination significantly altered BP, nicotine exposure disrupted circadian BP regulation with reduced BP dipping. LV catheterization revealed that combined exposure to nicotine and HFD led to LV diastolic dysfunction with increased LV end-diastolic pressure (LVEDP). Moreover, combined exposure resulted in increased inhibitory phosphorylation of endothelial nitric oxide synthase and greater impairment of endothelium-dependent vasodilation. Finally, a small cohort of C57BL/6N females with combined exposure exhibited similar increases in LVEDP, indicating that both sexes are susceptible to the combined effect of nicotine and HFD. In summary, combined exposure to nicotine and HFD leads to greater CV harm, including both additive and new-onset CV dysfunction.NEW & NOTEWORTHY Nicotine product usage and high-fat diet consumption are two modifiable risk factors for cardiovascular diseases. Here, we demonstrate that in mice, combined exposure to inhaled nicotine and high-fat diet results in unique cardiovascular consequences compared with either treatment alone, including left ventricular diastolic dysfunction, dysregulation of blood pressure, autonomic dysfunction, and greater impairment of endothelium-dependent vasorelaxation. These findings indicate that individuals who consume both nicotine products and high-fat diet have distinctive cardiovascular risks.


Assuntos
Dieta Hiperlipídica , Disfunção Ventricular Esquerda , Humanos , Feminino , Camundongos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Nicotina/toxicidade , Camundongos Endogâmicos C57BL , Vasodilatação , Pressão Sanguínea , Disfunção Ventricular Esquerda/induzido quimicamente
9.
Circ Res ; 131(3): 222-235, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35701874

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) exerts mitochondria-specific actions that include the preservation of oxidative phosphorylation, biogenesis, and ATP synthesis, while inhibiting cell death. 3-MST (3-mercaptopyruvate sulfurtransferase) is a mitochondrial H2S-producing enzyme whose functions in the cardiovascular disease are not fully understood. In the current study, we investigated the effects of global 3-MST deficiency in the setting of pressure overload-induced heart failure. METHODS: Human myocardial samples obtained from patients with heart failure undergoing cardiac surgeries were probed for 3-MST protein expression. 3-MST knockout mice and C57BL/6J wild-type mice were subjected to transverse aortic constriction to induce pressure overload heart failure with reduced ejection fraction. Cardiac structure and function, vascular reactivity, exercise performance, mitochondrial respiration, and ATP synthesis efficiency were assessed. In addition, untargeted metabolomics were utilized to identify key pathways altered by 3-MST deficiency. RESULTS: Myocardial 3-MST was significantly reduced in patients with heart failure compared with nonfailing controls. 3-MST KO mice exhibited increased accumulation of branched-chain amino acids in the myocardium, which was associated with reduced mitochondrial respiration and ATP synthesis, exacerbated cardiac and vascular dysfunction, and worsened exercise performance following transverse aortic constriction. Restoring myocardial branched-chain amino acid catabolism with 3,6-dichlorobenzo1[b]thiophene-2-carboxylic acid (BT2) and administration of a potent H2S donor JK-1 ameliorates the detrimental effects of 3-MST deficiency in heart failure with reduced ejection fraction. CONCLUSIONS: Our data suggest that 3-MST derived mitochondrial H2S may play a regulatory role in branched-chain amino acid catabolism and mediate critical cardiovascular protection in heart failure.


Assuntos
Insuficiência Cardíaca , Sulfeto de Hidrogênio , Disfunção Ventricular Esquerda , Trifosfato de Adenosina/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/metabolismo
10.
J Struct Biol ; 215(2): 107965, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100102

RESUMO

In cryo-transmission electron microscopy (cryo-TEM), sample thickness is one of the most important parameters that governs image quality. When combining cryo-TEM with other imaging methods, such as light microscopy, measuring and controlling the sample thickness to ensure suitability of samples becomes even more critical due to the low throughput of such correlated imaging experiments. Here, we present a method to assess the sample thickness using reflected light microscopy and machine learning that can be used prior to TEM imaging of a sample. The method makes use of the thin-film interference effect that is observed when imaging narrow-band LED light sources reflected by thin samples. By training a neural network to translate such reflection images into maps of the underlying sample thickness, we are able to accurately predict the thickness of cryo-TEM samples using a light microscope. We exemplify our approach using mammalian cells grown on TEM grids, and demonstrate that the thickness predictions are highly similar to the measured sample thickness. The open-source software described herein, including the neural network and algorithms to generate training datasets, is freely available at github.com/bionanopatterning/thicknessprediction. With the recent development of in situ cellular structural biology using cryo-TEM, there is a need for fast and accurate assessment of sample thickness prior to high-resolution imaging. We anticipate that our method will improve the throughput of this assessment by providing an alternative method to screening using cryo-TEM. Furthermore, we demonstrate that our method can be incorporated into correlative imaging workflows to locate intracellular proteins at sites ideal for high-resolution cryo-TEM imaging.


Assuntos
Aprendizado de Máquina , Proteínas , Animais , Microscopia Eletrônica de Transmissão , Microscopia Crioeletrônica/métodos , Software , Mamíferos
11.
J Struct Biol ; 215(4): 108040, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918761

RESUMO

Correlated super-resolution cryo-fluorescence and cryo-electron microscopy (cryoEM) has been gaining popularity as a method to investigate biological samples with high resolution and specificity. A concern in this combined method (called SR-cryoCLEM), however, is whether and how fluorescence imaging prior to cryoEM acquisition is detrimental to sample integrity. In this report, we investigated the effect of high-dose laser light (405, 488, and 561 nm) irradiation on apoferritin samples prepared for cryoEM with excitation wavelengths commonly used in fluorescence microscopy, and compared these samples to controls that were kept in the dark. We found that laser illumination, of equal duration and intensity as used in cryo-single molecule localization microscopy (cryoSMLM) and in the presence of high concentrations of fluorescent protein, did not affect the achievable resolution in cryoEM, with final reconstructions reaching resolutions of âˆ¼ 1.8 Å regardless of the laser illumination. The finding that super-resolution fluorescence imaging of cryosamples prior to cryoEM data acquisition does not limit the achievable resolution suggests that super-resolution cryo-fluorescence microscopy and in situ structural biology using cryoEM are entirely compatible.


Assuntos
Biologia Molecular , Imagem Óptica , Microscopia Crioeletrônica/métodos , Microscopia de Fluorescência/métodos , Corantes
12.
Clin Sci (Lond) ; 136(12): 973-987, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35678315

RESUMO

Cigarette smoking remains the leading modifiable risk factor for cardiopulmonary diseases; however, the effects of nicotine alone on cardiopulmonary function remain largely unknown. Previously, we have shown that chronic nicotine vapor inhalation in mice leads to the development of pulmonary hypertension (PH) with right ventricular (RV) remodeling. The present study aims to further examine the cardiopulmonary effects of nicotine and the role of the α7 nicotinic acetylcholine receptor (α7-nAChR), which is widely expressed in the cardiovascular system. Wild-type (WT) and α7-nAChR knockout (α7-nAChR-/-) mice were exposed to room air (control) or nicotine vapor daily for 12 weeks. Consistent with our previous study, echocardiography and RV catheterization reveal that male WT mice developed increased RV systolic pressure with RV hypertrophy and dilatation following 12-week nicotine vapor exposure; in contrast, these changes were not observed in male α7-nAChR-/- mice. In addition, chronic nicotine inhalation failed to induce PH and RV remodeling in female mice regardless of genotype. The effects of nicotine on the vasculature were further examined in male mice. Our results show that chronic nicotine inhalation led to impaired acetylcholine-mediated vasodilatory response in both thoracic aortas and pulmonary arteries, and these effects were accompanied by altered endothelial nitric oxide synthase phosphorylation (enhanced inhibitory phosphorylation at threonine 495) and reduced plasma nitrite levels in WT but not α7-nAChR-/- mice. Finally, RNA sequencing revealed up-regulation of multiple inflammatory pathways in thoracic aortas from WT but not α7-nAChR-/- mice. We conclude that the α7-nAChR mediates chronic nicotine inhalation-induced PH, RV remodeling and vascular dysfunction.


Assuntos
Nicotina , Receptor Nicotínico de Acetilcolina alfa7 , Acetilcolina/metabolismo , Administração por Inalação , Animais , Aorta Torácica/efeitos dos fármacos , Feminino , Masculino , Camundongos , Nicotina/administração & dosagem , Artéria Pulmonar/efeitos dos fármacos , Regulação para Cima , Vasodilatação/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
13.
Proc Natl Acad Sci U S A ; 116(24): 11900-11905, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31147461

RESUMO

Antigen binding by serum Ig-M (IgM) protects against microbial infections and helps to prevent autoimmunity, but causes life-threatening diseases when mistargeted. How antigen-bound IgM activates complement-immune responses remains unclear. We present cryoelectron tomography structures of IgM, C1, and C4b complexes formed on antigen-bearing lipid membranes by normal human serum at 4 °C. The IgM-C1-C4b complexes revealed C4b product release as the temperature-limiting step in complement activation. Both IgM hexamers and pentamers adopted hexagonal, dome-shaped structures with Fab pairs, dimerized by hinge domains, bound to surface antigens that support a platform of Fc regions. C1 binds IgM through widely spread C1q-collagen helices, with C1r proteases pointing outward and C1s bending downward and interacting with surface-attached C4b, which further interacts with the adjacent IgM-Fab2 and globular C1q-recognition unit. Based on these data, we present mechanistic models for antibody-mediated, C1q-transmitted activation of C1 and for C4b deposition, while further conformational rearrangements are required to form C3 convertases.


Assuntos
Ativação do Complemento/imunologia , Complemento C1/imunologia , Complemento C4/imunologia , Imunoglobulina M/imunologia , Anticorpos/imunologia , Antígenos/imunologia , Sítios de Ligação/imunologia , Humanos , Modelos Moleculares
15.
Bioconjug Chem ; 32(1): 94-98, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33307668

RESUMO

DNA origami nanostructures generally require a single scaffold strand of specific length, combined with many small staple strands. Ideally, the length of the scaffold strand should be dictated by the size of the designed nanostructure. However, synthesizing arbitrary-length single-stranded DNA in sufficient quantities is difficult. Here, we describe a straightforward and accessible method to produce defined-length ssDNA scaffolds using PCR and subsequent selective enzymatic digestion with T7 exonuclease. This approach produced ssDNA with higher yields than other methods and without the need for purification, which significantly decreased the time from PCR to obtaining pure DNA origami. Furthermore, this enabled us to perform true one-pot synthesis of defined-size DNA origami nanostructures. Additionally, we show that multiple smaller ssDNA scaffolds can efficiently substitute longer scaffolds in the formation of DNA origami.


Assuntos
DNA de Cadeia Simples/síntese química , DNA de Cadeia Simples/química , Nanoestruturas/química , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase
16.
Am J Physiol Heart Circ Physiol ; 317(4): H820-H829, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31441690

RESUMO

Ischemic heart diseases such as myocardial infarction (MI) are the largest contributors to cardiovascular disease worldwide. The resulting cardiac cell death impairs function of the heart and can lead to heart failure and death. Reperfusion of the ischemic tissue is necessary but causes damage to the surrounding tissue by reperfusion injury. Cortical bone stem cells (CBSCs) have been shown to increase pump function and decrease scar size in a large animal swine model of MI. To investigate the potential mechanism for these changes, we hypothesized that CBSCs were altering cardiac cell death after reperfusion. To test this, we performed TUNEL staining for apoptosis and antibody-based immunohistochemistry on tissue from Göttingen miniswine that underwent 90 min of lateral anterior descending coronary artery ischemia followed by 3 or 7 days of reperfusion to assess changes in cardiomyocyte and noncardiomyocyte cell death. Our findings indicate that although myocyte apoptosis is present 3 days after ischemia and is lower in CBSC-treated animals, myocyte apoptosis accounts for <2% of all apoptosis in the reperfused heart. In addition, nonmyocyte apoptosis trends toward decreased in CBSC-treated hearts, and although CBSCs increase macrophage and T-cell populations in the infarct region, the occurrence of apoptosis in CD45+ cells in the myocardium is not different between groups. From these data, we conclude that CBSCs may be influencing cardiomyocyte and noncardiomyocyte cell death and immune cell recruitment dynamics in the heart after MI, and these changes may account for some of the beneficial effects conferred by CBSC treatment.NEW & NOTEWORTHY The following research explores aspects of cell death and inflammation that have not been previously studied in a large animal model. In addition, apoptosis and cell death have not been studied in the context of cell therapy and myocardial infarction. In this article, we describe interactions between cell therapy and inflammation and the potential implications for cardiac wound healing.


Assuntos
Apoptose , Infarto do Miocárdio/cirurgia , Traumatismo por Reperfusão Miocárdica/cirurgia , Miócitos Cardíacos/patologia , Transplante de Células-Tronco , Células-Tronco , Tíbia/citologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/imunologia , Suínos , Porco Miniatura , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo
17.
Basic Res Cardiol ; 114(2): 9, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30656501

RESUMO

Enthusiasm for cell therapy for myocardial injury has waned due to equivocal benefits in clinical trials. In an attempt to improve efficacy, we investigated repeated cell therapy and adjunct renal denervation (RDN) as strategies for augmenting cardioprotection with cardiosphere-derived cells (CDCs). We hypothesized that combining CDC post-conditioning with repeated CDC doses or delayed RDN therapy would result in superior function and remodeling. Wistar-Kyoto (WKY) rats or spontaneously hypertensive rats (SHR) were subjected to 45 min of coronary artery ligation followed by reperfusion for 12-14 weeks. In the first study arm, SHR were treated with CDCs (0.5 × 106 i.c.) or PBS 20 min following reperfusion, or additionally treated with CDCs (1.0 × 106 i.v.) at 2, 4, and 8 weeks. In the second arm, at 4 weeks following myocardial infarction (MI), SHR received CDCs (0.5 × 106 i.c.) or CDCs + RDN. In the third arm, WKY rats were treated with i.c. CDCs administered 20 min following reperfusion and RDN or a sham at 4 weeks. Early i.c. + multiple i.v. dosing, but not single i.c. dosing, of CDCs improved long-term left ventricular (LV) function, but not remodeling. Delayed CDC + RDN therapy was not superior to single-dose delayed CDC therapy. Early CDC + delayed RDN therapy improved LV ejection fraction and remodeling compared to both CDCs alone and RDN alone. Given that both RDN and CDCs are currently in the clinic, our findings motivate further translation targeting a heart failure indication with combined approaches.


Assuntos
Denervação Autônoma/métodos , Traumatismo por Reperfusão Miocárdica , Transplante de Células-Tronco/métodos , Animais , Insuficiência Cardíaca , Rim/inervação , Rim/cirurgia , Masculino , Infarto do Miocárdio , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Remodelação Ventricular/fisiologia
18.
Circ Res ; 121(11): 1263-1278, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28912121

RESUMO

RATIONALE: Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. OBJECTIVE: To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. METHODS AND RESULTS: Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×107 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU+ cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CONCLUSIONS: CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve. These effects reduce those processes that can lead to heart failure with reduced ejection fraction.


Assuntos
Osso Cortical/citologia , Infarto do Miocárdio/cirurgia , Traumatismo por Reperfusão Miocárdica/cirurgia , Miocárdio/patologia , Células-Tronco/fisiologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Apoptose , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hemodinâmica , Contração Miocárdica , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fenótipo , Volume Sistólico , Sus scrofa , Fatores de Tempo
19.
Meteorit Planet Sci ; 54(4): 811-835, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31360056

RESUMO

Larkman Nunatak (LAR) 12095 and LAR 12240 are recent olivine-phyric shergottite lnds. We report the results of petrographic and chemical analyses of these two samples to understand their petrogenesis on Mars. Based on our analyses, we suggest that these samples are likely paired and are most similar to other depleted olivine-phyric shergottites, particularly Dar al Gani (DaG) 476 and Sayh al Uhaymir (SaU) 005 (and samples paired with those). The olivine megacryst cores in LAR 12095 and LAR 12240 are not in equilibrium with the groundmass olivines. We infer that these megacrysts are phenocrysts and their major element compositions have been homogenized by diffusion (the cores of the olivine megacrysts have Mg# ~70, whereas megacryst rims and groundmass olivines typically have Mg# ~58-60). The rare earth element (REE) microdistributions in the various phases (olivine, low- and high-Ca pyroxene, maskelynite, and merrillite) in both samples are similar and support the likelihood that these two shergottites are indeed paired. The calculated parent melt (i.e., in equilibrium with the low-Ca pyroxene, which is one of the earliest formed REE-bearing minerals) has an REE pattern parallel to that of melt in equilibrium with merrillite (i.e., one of the last-formed minerals). This suggests that the LAR 12095/12240 paired shergottites represent the product of closed-system fractional crystallization following magma emplacement and crystal accumulation. Utilizing the europium oxybarometer, we estimate that the magmatic oxygen fugacity early in the crystallization sequence was ~IW. Finally, petrographic evidence indicates that LAR 12095/12240 experienced extensive shock prior to being ejected from Mars.

20.
Am J Physiol Heart Circ Physiol ; 315(3): H563-H570, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29949382

RESUMO

Cardiac fibroblasts are critical mediators of fibrotic remodeling in the failing heart and transform into myofibroblasts in the presence of profibrotic factors such as transforming growth factor-ß. Myocardial fibrosis worsens cardiac function, accelerating the progression to decompensated heart failure (HF). We investigated the effects of a novel inhibitor (NM922; NovoMedix, San Diego, CA) of the conversion of normal fibroblasts to the myofibroblast phenotype in the setting of pressure overload-induced HF. NM922 inhibited fibroblast-to-myofibroblast transformation in vitro via a reduction of activation of the focal adhesion kinase-Akt-p70S6 kinase and STAT3/4E-binding protein 1 pathways as well as via induction of cyclooxygenase-2. NM922 preserved left ventricular ejection fraction ( P < 0.05 vs. vehicle) and significantly attenuated transverse aortic constriction-induced LV dilation and hypertrophy ( P < 0.05 compared with vehicle). NM922 significantly ( P < 0.05) inhibited fibroblast activation, as evidenced by reduced myofibroblast counts per square millimeter of tissue area. Picrosirius red staining demonstrated that NM922 reduced ( P < 0.05) interstitial fibrosis compared with mice that received vehicle. Similarly, NM922 hearts had lower mRNA levels ( P < 0.05) of collagen types I and III, lysyl oxidase, and TNF-α at 16 wk after transverse aortic constriction. Treatment with NM922 after the onset of cardiac hypertrophy and HF resulted in attenuated myocardial collagen formation and adverse remodeling with preservation of left ventricular ejection fraction. Future studies are aimed at further elucidation of the molecular and cellular mechanisms by which this novel antifibrotic agent protects the failing heart. NEW & NOTEWORTHY Our data demonstrated that a novel antifibrotic agent, NM922, blocks the activation of fibroblasts, reduces the formation of cardiac fibrosis, and preserves cardiac function in a murine model of heart failure with reduced ejection fraction.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Sulfonamidas/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiotônicos/uso terapêutico , Células Cultivadas , Colágeno/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/química , Sulfonamidas/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA