RESUMO
Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. One of the hallmarks of ALT cancer is the excessively clustered telomeres in promyelocytic leukemia (PML) bodies, represented as large bright telomere foci. Here, we present a model system that generates telomere clustering in nuclear polySUMO (small ubiquitin-like modification)/polySIM (SUMO-interacting motif) condensates, analogous to PML bodies, and thus artificially engineered ALT-associated PML body (APB)-like condensates in vivo. We observed that the ALT-like phenotypes (i.e., a small fraction of heterogeneous telomere lengths and formation of C circles) are rapidly induced by introducing the APB-like condensates together with BLM through its helicase domain, accompanied by ssDNA generation and RPA accumulation at telomeres. Moreover, these events lead to mitotic DNA synthesis (MiDAS) at telomeres mediated by RAD52 through its highly conserved N-terminal domain. We propose that the clustering of large amounts of telomeres in human cancers promotes ALT that is mediated by MiDAS, analogous to Saccharomyces cerevisiae type II ALT survivors.
Assuntos
Núcleo Celular/metabolismo , DNA/biossíntese , Leucemia Promielocítica Aguda/fisiopatologia , Mitose , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , RecQ Helicases/metabolismo , Homeostase do Telômero/genética , Motivos de Aminoácidos , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Leucemia Promielocítica Aguda/genética , Fenótipo , Transporte Proteico , Proteína SUMO-1/metabolismo , Telômero/genética , Telômero/metabolismoRESUMO
Tumors display increased uptake and processing of nutrients to fulfill the demands of rapidly proliferating cancer cells. Seminal studies have shown that the proto-oncogene MYC promotes metabolic reprogramming by altering glutamine uptake and metabolism in cancer cells. How MYC regulates the metabolism of other amino acids in cancer is not fully understood. Using high-performance liquid chromatography (HPLC)-tandem mass spectrometry (LC-MS/MS), we found that MYC increased intracellular levels of tryptophan and tryptophan metabolites in the kynurenine pathway. MYC induced the expression of the tryptophan transporters SLC7A5 and SLC1A5 and the enzyme arylformamidase (AFMID), involved in the conversion of tryptophan into kynurenine. SLC7A5, SLC1A5, and AFMID were elevated in colon cancer cells and tissues, and kynurenine was significantly greater in tumor samples than in the respective adjacent normal tissue from patients with colon cancer. Compared with normal human colonic epithelial cells, colon cancer cells were more sensitive to the depletion of tryptophan. Blocking enzymes in the kynurenine pathway caused preferential death of established colon cancer cells and transformed colonic organoids. We found that only kynurenine and no other tryptophan metabolite promotes the nuclear translocation of the transcription factor aryl hydrocarbon receptor (AHR). Blocking the interaction between AHR and kynurenine with CH223191 reduced the proliferation of colon cancer cells. Therefore, we propose that limiting cellular kynurenine or its downstream targets could present a new strategy to reduce the proliferation of MYC-dependent cancer cells.
Assuntos
Neoplasias do Colo/fisiopatologia , Cinurenina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Triptofano/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Antineoplásicos/farmacologia , Arilformamidase/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Cinurenina/genética , Transportador 1 de Aminoácidos Neutros Grandes/genética , Antígenos de Histocompatibilidade Menor/genética , Oximas/farmacologia , Proto-Oncogene Mas , Sulfonamidas/farmacologiaRESUMO
MYC enhances protein synthesis by regulating genes involved in ribosome biogenesis and protein translation. Here, we show that MYC-induced protein translation is mediated by the transcription factor aryl hydrocarbon receptor (AHR), which is induced by MYC in colonic cells. AHR promotes protein synthesis by activating the transcription of genes required for ribosome biogenesis and protein translation, including OGFOD1 and NOLC1. Using surface sensing of translation (SUnSET) to measure global protein translation, we found that silencing AHR or its targets diminishes protein synthesis. Therefore, targeting AHR or its downstream pathways could provide a novel approach to limit biomass production in MYC-driven tumors.
Assuntos
Nucléolo Celular/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Hidrocarboneto Arílico/fisiologia , Animais , Linhagem Celular , Nucléolo Celular/genética , Células Cultivadas , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Ratos , Receptores de Hidrocarboneto Arílico/biossíntese , Receptores de Hidrocarboneto Arílico/genética , Ativação TranscricionalRESUMO
Many recent advances have emerged in the telomere and telomerase fields. This Timeline article highlights the key advances that have expanded our views on the mechanistic underpinnings of telomeres and telomerase and their roles in ageing and disease. Three decades ago, the classic view was that telomeres protected the natural ends of linear chromosomes and that telomerase was a specific telomere-terminal transferase necessary for the replication of chromosome ends in single-celled organisms. While this concept is still correct, many diverse fields associated with telomeres and telomerase have substantially matured. These areas include the discovery of most of the key molecular components of telomerase, implications for limits to cellular replication, identification and characterization of human genetic disorders that result in premature telomere shortening, the concept that inhibiting telomerase might be a successful therapeutic strategy and roles for telomeres in regulating gene expression. We discuss progress in these areas and conclude with challenges and unanswered questions in the field.
Assuntos
Envelhecimento/genética , Genômica/história , Neoplasias/genética , Telomerase/genética , Telômero/química , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Envelhecimento/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Regulação da Expressão Gênica , Genômica/métodos , História do Século XX , História do Século XXI , Humanos , Chaperonas Moleculares , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Progéria/genética , Progéria/metabolismo , Progéria/patologia , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Complexo Shelterina , Telomerase/metabolismo , Telômero/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismoRESUMO
Nuclear speckles are non-membrane-bound organelles known as storage sites for messenger RNA (mRNA) processing and splicing factors. More recently, nuclear speckles have also been implicated in splicing and export of a subset of mRNAs, including the influenza virus M mRNA that encodes proteins required for viral entry, trafficking, and budding. However, little is known about how nuclear speckles are assembled or regulated. Here, we uncovered a role for the cellular protein kinase TAO2 as a constituent of nuclear speckles and as a factor required for the integrity of these nuclear bodies and for their functions in pre-mRNA splicing and trafficking. We found that a nuclear pool of TAO2 is localized at nuclear speckles and interacts with nuclear speckle factors involved in RNA splicing and nuclear export, including SRSF1 and Aly/Ref. Depletion of TAO2 or inhibition of its kinase activity disrupts nuclear speckle structure, decreasing the levels of several proteins involved in nuclear speckle assembly and splicing, including SC35 and SON. Consequently, splicing and nuclear export of influenza virus M mRNA were severely compromised and caused a disruption in the virus life cycle. In fact, low levels of TAO2 led to a decrease in viral protein levels and inhibited viral replication. Additionally, depletion or inhibition of TAO2 resulted in abnormal expression of a subset of mRNAs with key roles in viral replication and immunity. Together, these findings uncovered a function of TAO2 in nuclear speckle formation and function and revealed host requirements and vulnerabilities for influenza infection.
Assuntos
Núcleo Celular , Salpicos Nucleares , Proteínas Quinases , Splicing de RNA , Transporte Ativo do Núcleo Celular , Núcleo Celular/enzimologia , Células HeLa , Humanos , Proteínas Quinases/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/genéticaRESUMO
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment are lacking. We asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound (CDDO-EA) mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received CDDO-EA (400 µg/g of food) or a control diet (vehicle, Veh) for 5 days and Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: (1) location discrimination reversal (tests behavior pattern separation and cognitive flexibility, abilities reliant on the dentate gyrus) and (2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment's end (14.25-month post-IRR), an index relevant to neurogenesis was quantified (doublecortin-immunoreactive [DCX+] dentate gyrus immature neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. One radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had slower stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice showed normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change relevant to neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
RESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19), known to be more common in the elderly, who also show more severe symptoms and are at higher risk of hospitalization and death. Here, we show that the expression of the angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 cell receptor, increases during aging in mouse and human lungs. ACE2 expression increases upon telomere shortening or dysfunction in both cultured mammalian cells and in vivo in mice. This increase is controlled at the transcriptional level, and Ace2 promoter activity is DNA damage response (DDR)-dependent. Both pharmacological global DDR inhibition of ATM kinase activity and selective telomeric DDR inhibition by the use of antisense oligonucleotides prevent Ace2 upregulation following telomere damage in cultured cells and in mice. We propose that during aging telomere dysfunction due to telomeric shortening or damage triggers DDR activation and this causes the upregulation of ACE2, the SARS-CoV-2 cell receptor, thus contributing to make the elderly more susceptible to the infection.
Assuntos
Envelhecimento , Enzima de Conversão de Angiotensina 2/genética , COVID-19 , Dano ao DNA , Telômero , Idoso , Envelhecimento/genética , Animais , Humanos , Camundongos , SARS-CoV-2 , Telômero/genéticaRESUMO
Telomeres are thought to be maintained by the preferential recruitment of telomerase to the shortest telomeres. The extension of the G-rich telomeric strand by telomerase is also believed to be coordinated with the complementary synthesis of the C strand by the conventional replication machinery. However, we show that under telomere length-maintenance conditions in cancer cells, human telomerase extends most chromosome ends during each S phase and is not preferentially recruited to the shortest telomeres. Telomerase rapidly extends the G-rich strand following telomere replication but fill-in of the C strand is delayed into late S phase. This late C-strand fill-in is not executed by conventional Okazaki fragment synthesis but by a mechanism using a series of small incremental steps. These findings highlight differences between telomerase actions during steady state versus nonequilibrium conditions and reveal steps in the human telomere maintenance pathway that may provide additional targets for the development of anti-telomerase therapeutics.
Assuntos
Telomerase/metabolismo , Telômero/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Fase S , Saccharomyces cerevisiae/enzimologiaRESUMO
Mutant KRAS, the most frequently occurring (â¼30%) driver oncogene in lung adenocarcinoma, induces normal epithelial cells to undergo senescence. This phenomenon, called "oncogene-induced senescence (OIS)", prevents mutant KRAS-induced malignant transformation. We have previously reported that mutant KRASV12 induces OIS in a subset of normal human bronchial epithelial cell line immortalized with hTERT and Cdk4. Understanding the mechanism and efficacy of this important cancer prevention mechanism is a key knowledge gap. Therefore, this study investigates mutant KRASV12-induced OIS in upregulated telomerase combined with the p16/RB pathway inactivation in normal bronchial epithelial cells. The normal (non-transformed and non-tumorigenic) human bronchial epithelial cell line HBEC3 (also called "HBEC3KT"), immortalized with hTERT ("T") and Cdk4 ("K"), was used in this study. HBEC3 that expressed mutant KRASV12 in a doxycycline-regulated manner was established (designated as HBEC3-RIN2). Controlled induction of mutant KRASV12 expression induced partial epithelial-to-mesenchymal transition in HBEC3-RIN2 cells, which was associated with upregulated expression of ZEB1 and SNAIL. Mutant KRASV12 caused the majority of HBEC3-RIN2 to undergo morphological changes; suggestive of senescence, which was associated with enhanced autophagic flux. Upon mutant KRASV12 expression, only a small HBEC3-RIN2 cell subset underwent senescence, as assessed by a senescence-associated ß-galactosidase staining (SA-ßG) method. Furthermore, mutant KRASV12 enhanced cell growth, evaluated by colorimetric proliferation assay, and liquid and soft agar colony formation assays, partially through increased phosphorylated AKT and ERK expression but did not affect cell division, or cell cycle status. Intriguingly, mutant KRASV12 reduced p53 protein expression but increased p21 protein expression by prolonging its half-life. These results indicate that an hTERT/Cdk4 -immortalized normal bronchial epithelial cell line is partially resistant to mutant KRASV12-induced senescence. This suggests that OIS does not efficiently suppress KRASV12-induced transformation in the context of the simultaneous occurrence of telomerase upregulation and inactivation of the p16/Rb pathway.
Assuntos
Telomerase , Brônquios/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Senescência Celular/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Telomerase/genética , Telomerase/metabolismoRESUMO
[This corrects the article DOI: 10.1371/journal.pgen.1007782.].
RESUMO
Telomeres are repetitive non-coding nucleotide sequences (TTAGGGn) capping the ends of chromosomes. Progressive telomere shortening with increasing age has been associated with shifts in gene expression through models such as the telomere position effect (TPE), which suggests reduced interference of the telomere with transcriptional activity of increasingly more distant genes. A modification of the TPE model, referred to as Telomere Position Effects over Long Distance (TPE-OLD), explains why some genes 1-10 MB from a telomere are still affected by TPE, but genes closer to the telomere are not. Here, we describe an imaging approach to systematically examine the occurrence of TPE-OLD at the single cell level. Compared to existing methods, the pipeline allows rapid analysis of hundreds to thousands of cells, which is necessary to establish TPE-OLD as an acceptable mechanism of gene expression regulation. We examined two human genes, ISG15 and TERT, for which TPE-OLD has been described before. For both genes, we found less interaction with the telomere on the same chromosome in old cells compared to young cells; and experimentally elongated telomeres in old cells rescued the level of telomere interaction for both genes. However, the dependency of the interactions on the age progression from young to old cells varied. One model for the differences between ISG15 and TERT may relate to the markedly distinct interstitial telomeric sequence arrangement in the two genes. Overall, this provides a strong rationale for the role of telomere length shortening in the regulation of gene expression.
Assuntos
Regulação da Expressão Gênica , Processamento de Imagem Assistida por Computador , Imagem Molecular , Análise de Célula Única , Encurtamento do Telômero , Telômero , Humanos , Citocinas/genética , Citocinas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Análise de Célula Única/métodos , Telomerase/genética , Telomerase/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismoRESUMO
Mitochondria are involved in a number of diverse cellular functions, including energy production, metabolic regulation, apoptosis, calcium homeostasis, cell proliferation, and motility, as well as free radical generation. Mitochondrial DNA (mtDNA) is present at hundreds to thousands of copies per cell in a tissue-specific manner. mtDNA copy number also varies during aging and disease progression and therefore might be considered as a biomarker that mirrors alterations within the human body. Here, we present a new quantitative, highly sensitive droplet digital PCR (ddPCR) method, droplet digital mitochondrial DNA measurement (ddMDM), to measure mtDNA copy number not only from cell populations but also from single cells. Our developed assay can generate data in as little as 3 h, is optimized for 96-well plates, and also allows the direct use of cell lysates without the need for DNA purification or nuclear reference genes. We show that ddMDM is able to detect differences between samples whose mtDNA copy number was close enough as to be indistinguishable by other commonly used mtDNA quantitation methods. By utilizing ddMDM, we show quantitative changes in mtDNA content per cell across a wide variety of physiological contexts including cancer progression, cell cycle progression, human T cell activation, and human aging.
Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Reação em Cadeia da Polimerase/métodos , Análise de Célula Única/métodos , Adulto , Idoso , Humanos , Limite de Detecção , Ativação Linfocitária , Linfócitos T/imunologiaRESUMO
Influenza A viruses are human pathogens with limited therapeutic options. Therefore, it is crucial to devise strategies for the identification of new classes of antiviral medications. The influenza A virus genome is constituted of 8 RNA segments. Two of these viral RNAs are transcribed into mRNAs that are alternatively spliced. The M1 mRNA encodes the M1 protein but is also alternatively spliced to yield the M2 mRNA during infection. M1 to M2 mRNA splicing occurs at nuclear speckles, and M1 and M2 mRNAs are exported to the cytoplasm for translation. M1 and M2 proteins are critical for viral trafficking, assembly, and budding. Here we show that gene knockout of the cellular protein NS1-BP, a constituent of the M mRNA speckle-export pathway and a binding partner of the virulence factor NS1 protein, inhibits M mRNA nuclear export without altering bulk cellular mRNA export, providing an avenue to preferentially target influenza virus. We performed a high-content, image-based chemical screen using single-molecule RNA-FISH to label viral M mRNAs followed by multistep quantitative approaches to assess cellular mRNA and cell toxicity. We identified inhibitors of viral mRNA biogenesis and nuclear export that exhibited no significant activity towards bulk cellular mRNA at non-cytotoxic concentrations. Among the hits is a small molecule that preferentially inhibits nuclear export of a subset of viral and cellular mRNAs without altering bulk cellular mRNA export. These findings underscore specific nuclear export requirements for viral mRNAs and phenocopy down-regulation of the mRNA export factor UAP56. This RNA export inhibitor impaired replication of diverse influenza A virus strains at non-toxic concentrations. Thus, this screening strategy yielded compounds that alone or in combination may serve as leads to new ways of treating influenza virus infection and are novel tools for studying viral RNA trafficking in the nucleus.
Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antivirais/farmacologia , Núcleo Celular/virologia , Vírus da Influenza A/metabolismo , Influenza Humana/virologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Vírus da Influenza A/genética , RNA Mensageiro/genética , RNA Viral/genética , Replicação Viral/efeitos dos fármacosRESUMO
While global chromatin conformation studies are emerging, very little is known about the chromatin conformation of human telomeres. Most studies have focused on the role of telomeres as a tumor suppressor mechanism. Here we describe how telomere length regulates gene expression long before telomeres become short enough to produce a DNA damage response (senescence). We directly mapped the interactions adjacent to specific telomere ends using a Hi-C (chromosome capture followed by high-throughput sequencing) technique modified to enrich for specific genomic regions. We demonstrate that chromosome looping brings the telomere close to genes up to 10 Mb away from the telomere when telomeres are long and that the same loci become separated when telomeres are short. Furthermore, expression array analysis reveals that many loci, including noncoding RNAs, may be regulated by telomere length. We report three genes (ISG15 [interferon-stimulated gene 15 kd], DSP [Desmoplakin], and C1S [complement component 1s subcomplement]) located at three different subtelomeric ends (1p, 6p, and 12p) whose expressions are altered with telomere length. Additionally, we confirmed by in situ analysis (3D-FISH [three-dimensional fluorescence in situ hybridization]) that chromosomal looping occurs between the loci of those genes and their respective telomere ends. We term this process TPE-OLD for "telomere position effect over long distances." Our results suggest a potential novel mechanism for how telomere shortening could contribute to aging and disease initiation/progression in human cells long before the induction of a critical DNA damage response.
Assuntos
Regulação da Expressão Gênica , Encurtamento do Telômero/genética , Telômero/genética , Telômero/metabolismo , Células Cultivadas , Cromatina/metabolismo , Perfilação da Expressão Gênica , Humanos , Mioblastos/citologiaRESUMO
The human adrenal cortex is composed of distinct zones that are the main source of steroid hormone production. The mechanism of adrenocortical cell differentiation into several functionally organized populations with distinctive identities remains poorly understood. Human adrenal disease has been difficult to study, in part due to the absence of cultured cell lines that faithfully represent adrenal cell precursors in the early stages of transformation. Here, Human Adrenocortical Adenoma (HAA1) cell line derived from a patient's macronodular adrenocortical hyperplasia and was treated with histone deacetylase inhibitors (HDACis) and gene expression was examined. We describe a patient-derived HAA1 cell line derived from the zona reticularis, the innermost zone of the adrenal cortex. The HAA1 cell line is unique in its ability to exit a latent state and respond with steroidogenic gene expression upon treatment with histone deacetylase inhibitors. The gene expression pattern of differentiated HAA1 cells partially recreates the roster of genes in the adrenal layer that they have been derived from. Gene ontology analysis of whole genome RNA-seq corroborated increased expression of steroidogenic genes upon HDAC inhibition. Surprisingly, HDACi treatment induced broad activation of the Tumor Necrosis Factor (TNF) alpha pathway. This novel cell line we developed will hopefully be instrumental in understanding the molecular and biochemical mechanisms controlling adrenocortical differentiation and steroidogenesis.
Assuntos
Córtex Suprarrenal , Adenoma Adrenocortical , Humanos , Zona Reticular/metabolismo , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Corticosteroides/metabolismo , Linhagem CelularRESUMO
The protein O6-methylguanine-DNA methyltransferase (MGMT) is able to repair the mutagenic O6-methylguanine (O6-MeG) adduct back to guanine. In this context, it may protect against colorectal cancer formation associated with N-nitroso compounds. Such compounds may be endogenously formed by nitrosylation of amino acids, which can give rise to mutagenic O6-MeG and O6-carboxymethylguanine (O6-CMG) adducts. It is well established that O6-MeG is repaired by MGMT. However, up to now, whether O6-CMG is repaired by this enzyme remains unresolved. Therefore, the aim of the present study was to analyze the fate of both types of O6-guanine adducts in the presence and absence of MGMT activity. To this end, MGMT activity was efficiently blocked by its chemical inhibitor O6-benzylguanine in human colon epithelial cells (HCECs). Exposure of cells to azaserine (AZA) caused significantly higher levels of both O6-MeG and O6-CMG adducts in MGMT-inhibited cells, with O6-CMG as the more abundant DNA lesion. Interestingly, MGMT inhibition did not result in higher levels of AZA-induced DNA strand breaks in spite of elevated DNA adduct levels. In contrast, MGMT inhibition significantly increased DNA strand break formation after exposure to temozolomide (TMZ), a drug that exclusively generates O6-MeG adducts. In line with this finding, the viability of the cells was moderately reduced by TMZ upon MGMT inhibition, whereas no clear effect was observed in cells treated with AZA. In conclusion, our study clearly shows that O6-CMG is repaired by MGMT in HCEC, thereby suggesting that MGMT might play an important role as a tumor suppressor in diet-mediated colorectal cancer.
Assuntos
Colo/metabolismo , Guanina/análogos & derivados , Mucosa Intestinal/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Linhagem Celular , Colo/citologia , Dano ao DNA , Reparo do DNA , Guanina/metabolismo , Humanos , Mucosa Intestinal/citologiaRESUMO
Defective DNA damage response (DDR) signaling is a common mechanism that initiates and maintains the cellular senescence phenotype. Dysfunctional telomeres activate DDR signaling, genomic instability, and cellular senescence, but the links among these events remains unclear. Here, using an array of biochemical and imaging techniques, including a highly regulatable CRISPR/Cas9 strategy to induce DNA double strand breaks specifically in the telomeres, ChIP, telomere immunofluorescence, fluorescence in situ hybridization (FISH), micronuclei imaging, and the telomere shortest length assay (TeSLA), we show that chromosome mis-segregation due to imperfect DDR signaling in response to dysfunctional telomeres creates a preponderance of chromatin fragments in the cytosol, which leads to a premature senescence phenotype. We found that this phenomenon is caused not by telomere shortening, but by cyclic GMP-AMP synthase (cGAS) recognizing cytosolic chromatin fragments and then activating the stimulator of interferon genes (STING) cytosolic DNA-sensing pathway and downstream interferon signaling. Significantly, genetic and pharmacological manipulation of cGAS not only attenuated immune signaling, but also prevented premature cellular senescence in response to dysfunctional telomeres. The findings of our study uncover a cellular intrinsic mechanism involving the cGAS-mediated cytosolic self-DNA-sensing pathway that initiates premature senescence independently of telomere shortening.
Assuntos
Senescência Celular/genética , Ligases/metabolismo , Nucleotídeos Cíclicos/metabolismo , Telômero , Ciclo Celular , Quebras de DNA de Cadeia Dupla , Humanos , Transdução de SinaisRESUMO
To date, there is no direct evidence of telomerase activity in adult lung epithelial cells, but typical culture conditions only support cell proliferation for 30-40 population doublings (PD), a point at which telomeres remain relatively long. Here we report that in in vitro low stress culture conditions consisting of a fibroblast feeder layer, rho-associated coiled coil protein kinase inhibitor (ROCKi), and low oxygen (2%), normal human bronchial epithelial basal progenitor cells (HBECs) divide for over 200 PD without engaging a telomere maintenance mechanism (almost four times the "Hayflick limit"). HBECs exhibit critically short telomeres at 200 PD and the population of cells start to undergo replicative senescence. Subcloning these late passage cells to clonal density, to mimic lung injury in vivo, selects for rare subsets of HBECs that activate low levels of telomerase activity to maintain short telomeres. CRISPR/Cas9 knockout of human telomerase reverse transcriptase or treatment with the telomerase-mediated telomere targeting agent 6-thio-2'deoxyguanosine abrogates colony growth in these late passage cultures (>200 PD) but not in early passage cultures (<200 PD). To our knowledge, this is the first study to report such long-term growth of HBECs without a telomere maintenance mechanism. This report also provides direct evidence of telomerase activation in HBECs near senescence when telomeres are critically short. This novel cell culture system provides an experimental model to understand how telomerase is regulated in normal adult tissues.
Assuntos
Brônquios/citologia , Técnicas de Cultura de Células/métodos , Proliferação de Células , Senescência Celular , Células Epiteliais/citologia , Fibroblastos/citologia , Telômero/fisiologia , Adulto , Brônquios/fisiologia , Divisão Celular , Células Cultivadas , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Humanos , Telomerase/metabolismo , Encurtamento do TelômeroRESUMO
Telomere-binding proteins constituting the shelterin complex have been studied primarily for telomeric functions. However, mounting evidence shows non-telomeric binding and gene regulation by shelterin factors. This raises a key question-do telomeres impact binding of shelterin proteins at distal non-telomeric sites? Here we show that binding of the telomere-repeat-binding-factor-2 (TRF2) at promoters ~60 Mb from telomeres depends on telomere length in human cells. Promoter TRF2 occupancy was depleted in cells with elongated telomeres resulting in altered TRF2-mediated transcription of distal genes. In addition, histone modifications-activation (H3K4me1 and H3K4me3) as well as silencing marks (H3K27me3)-at distal promoters were telomere length-dependent. These demonstrate that transcription, and the epigenetic state, of telomere-distal promoters can be influenced by telomere length. Molecular links between telomeres and the extra-telomeric genome, emerging from findings here, might have important implications in telomere-related physiology, particularly ageing and cancer.
Assuntos
Epigênese Genética , Regiões Promotoras Genéticas , Telômero/genética , Telômero/metabolismo , Transcrição Gênica , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Expressão Gênica , Genoma Humano , Código das Histonas/genética , Código das Histonas/fisiologia , Humanos , Ligação Proteica , Complexo Shelterina , Homeostase do Telômero/genética , Homeostase do Telômero/fisiologia , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismoRESUMO
Human telomerase maintains genome stability by adding telomeric repeats to the ends of linear chromosomes. Although previous studies have revealed profound insights into telomerase functions, the low cellular abundance of functional telomerase and the difficulties in quantifying its activity leave its thermodynamic and kinetic properties only partially characterized. Employing a stable cell line overexpressing both the human telomerase RNA component and the N-terminally biotinylated human telomerase reverse transcriptase and using a newly developed method to count individual extension products, we demonstrate here that human telomerase holoenzymes contain fast- and slow-acting catalytic sites. Surprisingly, both active sites became inactive after two consecutive rounds of catalysis, named single-run catalysis. The fast active sites turned off â¼40-fold quicker than the slow ones and exhibited higher affinities to DNA substrates. In a dimeric enzyme, the two active sites work in tandem, with the faster site functioning before the slower one, and in the monomeric enzyme, the active sites also perform single-run catalysis. Interestingly, inactive enzymes could be reactivated by intracellular telomerase-activating factors (iTAFs) from multiple cell types. We conclude that the single-run catalysis and the iTAF-triggered reactivation serve as an unprecedented control circuit for dynamic regulation of telomerase. They endow native telomerase holoenzymes with the ability to match their total number of active sites to the number of telomeres they extend. We propose that the exquisite kinetic control of telomerase activity may play important roles in both cell division and cell aging.