Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nano Lett ; 19(12): 8673-8682, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31726010

RESUMO

Metalenses, planar lenses realized by placing subwavelength nanostructures that locally impart lenslike phase shifts to the incident light, are promising as a replacement for refractive optics for their ultrathin, lightweight, and tailorable characteristics, especially for applications where payload is of significant importance. However, the requirement of fabricating up to billions of subwavelength structures for centimeter-scale metalenses can constrain size-scalability and mass-production for large lenses. In this Letter, we demonstrate a centimeter-scale, all-glass metalens capable of focusing and imaging at visible wavelength, using deep-ultraviolet (DUV) projection stepper lithography. Here, we show size-scalability and potential for mass-production by fabricating 45 metalenses of 1 cm diameter on a 4 in. fused-silica wafer. The lenses show diffraction-limited focusing behavior for any homogeneously polarized incidence at visible wavelengths. The metalens' performance is quantified by the Strehl ratio and the modulation transfer function (MTF), which are then compared with commercial refractive spherical and aspherical singlet lenses of similar size and focal length. We further explore the imaging capabilities of our metalens using a color-pixel sCMOS camera and scanning-imaging techniques, demonstrating potential applications for virtual reality (VR) devices or biological imaging techniques.


Assuntos
Vidro/química , Nanoestruturas/química , Impressão , Dióxido de Silício/química , Raios Ultravioleta , Óptica e Fotônica
2.
Opt Express ; 26(2): 1573-1585, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29402031

RESUMO

Optical components, such as lenses, have traditionally been made in the bulk form by shaping glass or other transparent materials. Recent advances in metasurfaces provide a new basis for recasting optical components into thin, planar elements, having similar or better performance using arrays of subwavelength-spaced optical phase-shifters. The technology required to mass produce them dates back to the mid-1990s, when the feature sizes of semiconductor manufacturing became considerably denser than the wavelength of light, advancing in stride with Moore's law. This provides the possibility of unifying two industries: semiconductor manufacturing and lens-making, whereby the same technology used to make computer chips is used to make optical components, such as lenses, based on metasurfaces. Using a scalable metasurface layout compression algorithm that exponentially reduces design file sizes (by 3 orders of magnitude for a centimeter diameter lens) and stepper photolithography, we show the design and fabrication of metasurface lenses (metalenses) with extremely large areas, up to centimeters in diameter and beyond. Using a single two-centimeter diameter near-infrared metalens less than a micron thick fabricated in this way, we experimentally implement the ideal thin lens equation, while demonstrating high-quality imaging and diffraction-limited focusing.

3.
Opt Express ; 24(16): 18024-34, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505769

RESUMO

We report the first demonstration of a mid-IR reflection-based flat lens with high efficiency and near diffraction-limited focusing. Focusing efficiency as high as 80%, in good agreement with simulations (83%), has been achieved at 45° incidence angle at λ = 4.6 µm. The off-axis geometry considerably simplifies the optical arrangement compared to the common geometry of normal incidence in reflection mode which requires beam splitters. Simulations show that the effects of incidence angle are small compared to parabolic mirrors with the same NA. The use of single-step photolithography allows large scale fabrication. Such a device is important in the development of compact telescopes, microscopes, and spectroscopic designs.

4.
Opt Express ; 21(8): 10295-300, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609739

RESUMO

By analogy to the three dimensional optical bottle beam, we introduce the plasmonic bottle beam: a two dimensional surface wave which features a lattice of plasmonic bottles, i.e. alternating regions of bright focii surrounded by low intensities. The two-dimensional bottle beam is created by the interference of a non-diffracting beam, a cosine-Gaussian beam, and a plane wave, thus giving rise to a non-diffracting complex intensity distribution. By controlling the propagation constant of the cosine-Gauss beam, the size and number of plasmonic bottles can be engineered. The two dimensional lattice of hot spots formed by this new plasmonic wave could have applications in plasmonic trapping.


Assuntos
Pinças Ópticas , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
5.
Sci Total Environ ; 876: 162704, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907397

RESUMO

The widespread COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) necessitated measures aimed at preventing the spread of SARS-CoV-2. To mitigate the risk of fomite-mediated transmission, environmental cleaning and disinfection regimes have been widely implemented. However, conventional cleaning approaches such as surface wipe downs can be laborious and more efficient and effective disinfecting technologies are needed. Gaseous ozone disinfection is one technology which has been shown to be effective in laboratory studies. Here, we evaluated its efficacy and feasibility in a public bus setting, using murine hepatitis virus (a related betacoronavirus surrogate) and the bacteria Staphylococcus aureus as test organisms. An optimal gaseous ozone regime resulted in a 3.65-log reduction of murine hepatitis virus and a 4.73-log reduction of S. aureus, and decontamination efficacy correlated with exposure duration and relative humidity in the application space. These findings demonstrated gaseous ozone disinfection in field settings which can be suitably translated to public and private fleets that share analogous characteristics.


Assuntos
Anti-Infecciosos , COVID-19 , Ozônio , Camundongos , Animais , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Descontaminação/métodos , Staphylococcus aureus , Pandemias/prevenção & controle , Desinfecção/métodos
6.
Sci Rep ; 9(1): 14879, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619705

RESUMO

Current day high speed optical communication systems employ photonic circuits using platforms such as silicon photonics. In these systems, the polarization state of light drifts due to effects such as polarization mode dispersion and nonlinear phenomena generated by photonic circuit building blocks. As the complexity, the number, and the variety of these building blocks grows, the demand increases for an in-situ polarization determination strategy. Here, we show that the transfer of the Belinfante momentum to particles in the evanescent field of waveguides depends in a non-trivial way on the polarization state of light within that waveguide. Surprisingly, we find that the maxima and minima of the lateral force are not produced with circularly polarized light, corresponding to the north and south poles of the Poincaré sphere. Instead, the maxima are shifted along the great circle of the sphere due to the phase differences between the scattered TE and TM components of light. This effect allows for an unambiguous reconstruction of the local polarization state of light inside a waveguide. Importantly, this technique depends on interaction with only the evanescent tails of the fields, allowing for a minimally invasive method to probe the polarization within a photonic chip.

7.
Sci Adv ; 4(2): eaap9957, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29507880

RESUMO

Focal adjustment and zooming are universal features of cameras and advanced optical systems. Such tuning is usually performed longitudinally along the optical axis by mechanical or electrical control of focal length. However, the recent advent of ultrathin planar lenses based on metasurfaces (metalenses), which opens the door to future drastic miniaturization of mobile devices such as cell phones and wearable displays, mandates fundamentally different forms of tuning based on lateral motion rather than longitudinal motion. Theory shows that the strain field of a metalens substrate can be directly mapped into the outgoing optical wavefront to achieve large diffraction-limited focal length tuning and control of aberrations. We demonstrate electrically tunable large-area metalenses controlled by artificial muscles capable of simultaneously performing focal length tuning (>100%) as well as on-the-fly astigmatism and image shift corrections, which until now were only possible in electron optics. The device thickness is only 30 µm. Our results demonstrate the possibility of future optical microscopes that fully operate electronically, as well as compact optical systems that use the principles of adaptive optics to correct many orders of aberrations simultaneously.

8.
Sci Rep ; 6: 26019, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184813

RESUMO

The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

9.
Nat Nanotechnol ; 10(9): 804-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26149237

RESUMO

In the Cherenkov effect a charged particle moving with a velocity faster than the phase velocity of light in the medium radiates light that forms a cone with a half angle determined by the ratio of the two speeds. Here, we show that by creating a running wave of polarization along a one-dimensional metallic nanostructure consisting of subwavelength-spaced rotated apertures that propagates faster than the surface plasmon polariton phase velocity, we can generate surface plasmon wakes, a two-dimensional analogue of Cherenkov radiation. The running wave of polarization travels with a speed determined by the angle of incidence and the photon spin angular momentum of the incident radiation. By changing either one of these properties we demonstrate controlled steering of the Cherenkov surface plasmon wakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA