Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38865496

RESUMO

Cichlid fishes of the genus Oreochromis (tilapia) are among the most important fish for inland capture fisheries and global aquaculture. Deliberate introductions of non-native species for fisheries improvement and accidental escapees from farms have resulted in admixture with indigenous species. Such hybridization may be detrimental to native biodiversity, potentially leading to genomic homogenization of populations and the loss of important genetic material associated with local adaptation. By contrast, introgression may fuel diversification when combined with ecological opportunity, by supplying novel genetic combinations. To date, the role of introgression in the evolutionary history of tilapia has not been explored. Here we studied both ancient and recent hybridization in tilapia, using whole genome resequencing of 575 individuals from 23 species. We focused on Tanzania, a natural hotspot of tilapia diversity, and a country where hybridization between exotic and native species in the natural environment has been previously reported. We reconstruct the first genome-scale phylogeny of the genus and reveal prevalent ancient gene flow across the Oreochromis phylogeny. This has likely resulted in the hybrid speciation of one species, O. chungruruensis. We identify multiple cases of recent hybridization between native and introduced species in the wild, linked to the use of non-native species in both capture fisheries improvement and aquaculture. This has potential implications for both conservation of wild populations and the development of the global tilapia aquaculture industry.


Assuntos
Hibridização Genética , Filogenia , Animais , Tanzânia , Fluxo Gênico , Ciclídeos/genética , Tilápia/genética
2.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36376993

RESUMO

Rapid ecological speciation along depth gradients has taken place repeatedly in freshwater fishes, yet molecular mechanisms facilitating such diversification are typically unclear. In Lake Masoko, an African crater lake, the cichlid Astatotilapia calliptera has diverged into shallow-littoral and deep-benthic ecomorphs with strikingly different jaw structures within the last 1,000 years. Using genome-wide transcriptome data, we explore two major regulatory transcriptional mechanisms, expression and splicing-QTL variants, and examine their contributions to differential gene expression underpinning functional phenotypes. We identified 7,550 genes with significant differential expression between ecomorphs, of which 5.4% were regulated by cis-regulatory expression QTLs, and 9.2% were regulated by cis-regulatory splicing QTLs. We also found strong signals of divergent selection on differentially expressed genes associated with craniofacial development. These results suggest that large-scale transcriptome modification plays an important role during early-stage speciation. We conclude that regulatory variants are important targets of selection driving ecologically relevant divergence in gene expression during adaptive diversification.


Assuntos
Ciclídeos , Especiação Genética , Animais , Ciclídeos/genética , Lagos , Fenótipo , Locos de Características Quantitativas
3.
Aquaculture ; 548: 737637, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35177872

RESUMO

Cichlid fish of the genus Oreochromis form the basis of the global tilapia aquaculture and fisheries industries. Broodstocks for aquaculture are often collected from wild populations, which in Africa may be from locations containing multiple Oreochromis species. However, many species are difficult to distinguish morphologically, hampering efforts to maintain good quality farmed strains. Additionally, non-native farmed tilapia populations are known to be widely distributed across Africa and to hybridize with native Oreochromis species, which themselves are important for capture fisheries. The morphological identification of these hybrids is particularly unreliable. Here, we describe the development of a single nucleotide polymorphism (SNP) genotyping panel from whole-genome resequencing data that enables targeted species identification in Tanzania. We demonstrate that an optimized panel of 96 genome-wide SNPs based on FST outliers performs comparably to whole genome resequencing in distinguishing species and identifying hybrids. We also show this panel outperforms microsatellite-based and phenotype-based classification methods. Case studies indicate several locations where introduced aquaculture species have become established in the wild, threatening native Oreochromis species. The novel SNP markers identified here represent an important resource for assessing broodstock purity in hatcheries and helping to conserve unique endemic biodiversity.

4.
Mol Ecol ; 30(4): 895-911, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33063411

RESUMO

Invasive freshwater fishes are known to readily hybridize with indigenous congeneric species, driving loss of unique and irreplaceable genetic resources. Here we reveal that newly discovered (2013-2016) evolutionarily significant populations of Korogwe tilapia (Oreochromis korogwe) from southern Tanzania are threatened by hybridization with the larger invasive Nile tilapia (Oreochromis niloticus). We use a combination of morphology, microsatellite allele frequencies and whole genome sequences to show that O. korogwe from southern lakes (Nambawala, Rutamba and Mitupa) are distinct from geographically disjunct populations in northern Tanzania (Zigi River and Mlingano Dam). We also provide genetic evidence of O. korogwe × niloticus hybrids in three southern lakes and demonstrate heterogeneity in the extent of admixture across the genome. Finally, using the least admixed genomic regions we estimate that the northern and southern O. korogwe populations most plausibly diverged ~140,000 years ago, suggesting that the geographical separation of the northern and southern groups is not a result of a recent translocation, and instead these populations represent independent evolutionarily significant units. We conclude that these newly discovered and phenotypically unique cichlid populations are already threatened by hybridization with an invasive species, and propose that these irreplaceable genetic resources would benefit from conservation interventions.


Assuntos
Ciclídeos , Animais , Biodiversidade , Ciclídeos/genética , Hibridização Genética , Espécies Introduzidas , Tanzânia
5.
Mol Phylogenet Evol ; 136: 215-226, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30974200

RESUMO

Although the majority of cichlid diversity occurs in the African Great Lakes, these fish have also diversified across the African continent. Such continental radiations, occurring in both rivers and lakes have received far less attention than lacustrine radiations despite some members, such as the oreochromine cichlids (commonly referred to as 'tilapia'), having significant scientific and socio-economic importance both within and beyond their native range. Unique among cichlids, several species of the genus Oreochromis exhibit adaptation to soda conditions (including tolerance to elevated temperatures and salinity), which are of interest from evolutionary biology research and aquaculture perspectives. Questions remain regarding the factors facilitating the diversification of this group, which to date have not been addressed within a phylogenetic framework. Here we present the first comprehensive (32/37 described species) multi-marker molecular phylogeny of Oreochromis and closely related Alcolapia, based on mitochondrial (1583 bp) and nuclear (3092 bp) sequence data. We show widespread discordance between nuclear DNA and mitochondrial DNA trees. This could be the result of incomplete lineage sorting and/or introgression in mitochondrial loci, although we did not find a strong signal for the latter. Based on our nuclear phylogeny we demonstrate that adaptation to adverse conditions (elevated salinity, temperature, or alkalinity) has occurred multiple times within Oreochromis, but that adaptation to extreme (soda) conditions (high salinity, temperature, and alkalinity) has likely arisen once in the lineage leading to O. amphimelas and Alcolapia. We also show Alcolapia is nested within Oreochromis, which is in agreement with previous studies, and here revise the taxonomy to synonymise the genus in Oreochromis, retaining the designation as subgenus Oreochromis (Alcolapia).


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Núcleo Celular/genética , Ciclídeos/classificação , Ciclídeos/genética , DNA Mitocondrial/genética , Filogenia , Adaptação Fisiológica/genética , Animais , Teorema de Bayes , Hibridização Genética , Lagos
6.
Conserv Genet ; 19(5): 1199-1209, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30363773

RESUMO

Among the many negative impacts of invasive species, hybridization with indigenous species has increasingly become recognized as a major issue. However, relatively few studies have characterized the phenotypic outcomes of hybridization following biological invasions. Here we investigate the genetic and morphological consequences of stocking invasive tilapia species in two water bodies in central Tanzania. We sampled individuals from the Mindu Reservoir on the Ruvu river system, and at Kidatu on the Great Ruaha-Rufiji river system. We screened individuals at 16 microsatellite loci, and quantified morphology using geometric morphometrics and linear measurements. In both the Mindu and Kidatu systems, we identified evidence of hybridization between indigenous Wami tilapia (Oreochromis urolepis) and the introduced Nile tilapia (Oreochromis niloticus) or blue-spotted tilapia (Oreochromis leucostictus). At both sites, purebred individuals could largely be separated using geometric morphometric variables, with hybrids occupying a broad morphospace among the parental species. Our data demonstrate that the gene pools and phenotypic identity of the indigenous O. urolepis have been severely impacted by the stocking of the invasive species. Given the lack of evidence for clear commercial benefits from stocking invasive tilapia species in waters already populated by indigenous congenerics, we suggest further spread of introduced species should be undertaken with considerable caution.

7.
iScience ; 27(1): 108669, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226161

RESUMO

There is considerable potential for nuclear genomic material in environmental DNA (eDNA) to inform us of population genetic structure within aquatic species. We tested if nuclear allelic composition data sourced from eDNA can resolve fine scale spatial genetic structure of the cichlid fish Astatotilapia calliptera in Lake Masoko, Tanzania. In this ∼35 m deep crater lake the species is diverging into two genetically distinguishable ecomorphs, separated by a thermo-oxycline at ∼15 m that divides biologically distinct water masses. We quantified population genetic structure along a depth transect using single nucleotide polymorphisms (SNPs) derived from genome sequencing of 530 individuals. This population genetic structure was reflected in a focal set of SNPs that were also reliably amplified from eDNA - with allele frequencies derived from eDNA reflecting those of fish within each depth zone. Thus, by targeting known genetic variation between populations within aquatic eDNA, we measured genetic structure within the focal species.

8.
Nat Ecol Evol ; 6(12): 1940-1951, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36266459

RESUMO

Epigenetic variation can alter transcription and promote phenotypic divergence between populations facing different environmental challenges. Here, we assess the epigenetic basis of diversification during the early stages of speciation. Specifically, we focus on the extent and functional relevance of DNA methylome divergence in the very young radiation of Astatotilapia calliptera in crater Lake Masoko, southern Tanzania. Our study focuses on two lake ecomorphs that diverged approximately 1,000 years ago and a population in the nearby river from which they separated approximately 10,000 years ago. The two lake ecomorphs show no fixed genetic differentiation, yet are characterized by different morphologies, depth preferences and diets. We report extensive genome-wide methylome divergence between the two lake ecomorphs, and between the lake and river populations, linked to key biological processes and associated with altered transcriptional activity of ecologically relevant genes. Such genes differing between lake ecomorphs include those involved in steroid metabolism, hemoglobin composition and erythropoiesis, consistent with their divergent habitat occupancy. Using a common-garden experiment, we found that global methylation profiles are often rapidly remodeled across generations but ecomorph-specific differences can be inherited. Collectively, our study suggests an epigenetic contribution to the early stages of vertebrate speciation.


Assuntos
Ciclídeos , Lagos , Animais , Evolução Biológica , Ciclídeos/genética , Ecossistema , Epigênese Genética
9.
PLoS Negl Trop Dis ; 14(9): e0008721, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32870920

RESUMO

[This corrects the article DOI: 10.1371/journal.pntd.0008129.].

10.
J Dev Biol ; 8(4)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020460

RESUMO

Although it is widely accepted that the cellular and molecular mechanisms of vertebrate cardiac development are evolutionarily conserved, this is on the basis of data from only a few model organisms suited to laboratory studies. Here, we investigate gene expression during cardiac development in the extremophile, non-model fish species, Oreochromis (Alcolapia) alcalica. We first characterise the early development of O. alcalica and observe extensive vascularisation across the yolk prior to hatching. We further investigate heart development by identifying and cloning O. alcalica orthologues of conserved cardiac transcription factors gata4, tbx5, and mef2c for analysis by in situ hybridisation. Expression of these three key cardiac developmental regulators also reveals other aspects of O. alcalica development, as these genes are expressed in developing blood, limb, eyes, and muscle, as well as the heart. Our data support the notion that O. alcalica is a direct-developing vertebrate that shares the highly conserved molecular regulation of the vertebrate body plan. However, the expression of gata4 in O. alcalica reveals interesting differences in the development of the circulatory system distinct from that of the well-studied zebrafish. Understanding the development of O. alcalica embryos is an important step towards providing a model for future research into the adaptation to extreme conditions; this is particularly relevant given that anthropogenic-driven climate change will likely result in more freshwater organisms being exposed to less favourable conditions.

11.
R Soc Open Sci ; 7(10): 201200, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204476

RESUMO

Tetrapods and fish have adapted distinct carbamoyl-phosphate synthase (CPS) enzymes to initiate the ornithine urea cycle during the detoxification of nitrogenous wastes. We report evidence that in the ureotelic subgenus of extremophile fish Oreochromis Alcolapia, CPS III has undergone convergent evolution and adapted its substrate affinity to ammonia, which is typical of terrestrial vertebrate CPS I. Unusually, unlike in other vertebrates, the expression of CPS III in Alcolapia is localized to the skeletal muscle and is activated in the myogenic lineage during early embryonic development with expression remaining in mature fish. We propose that adaptation in Alcolapia included both convergent evolution of CPS function to that of terrestrial vertebrates, as well as changes in development mechanisms redirecting CPS III gene expression to the skeletal muscle.

12.
PLoS Negl Trop Dis ; 14(3): e0008129, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203507

RESUMO

BACKGROUND: Schistosomiasis is a neglected tropical parasitic disease associated with severe pathology, mortality and economic loss worldwide. Programs for disease control may benefit from specific and sensitive diagnostic methods to detect Schistosoma trematodes in aquatic environments. Here we report the development of novel environmental DNA (eDNA) qPCR assays for the presence of the human-infecting species Schistosoma mansoni, S. haematobium and S. japonicum. METHODOLOGY/PRINCIPAL FINDINGS: We first tested the specificity of the assays across the three species using genomic DNA preparations which showed successful amplification of target sequences with no cross amplification between the three focal species. In addition, we evaluated the specificity of the assays using synthetic DNA of multiple Schistosoma species, and demonstrated a high overall specificity; however, S. japonicum and S. haematobium assays showed cross-species amplification with very closely-related species. We next tested the effectiveness of the S. mansoni assay using eDNA samples from aquaria containing infected host gastropods, with the target species revealed as present in all infected aquaria. Finally, we evaluated the effectiveness of the S. mansoni and S. haematobium assays using eDNA samples from eight discrete natural freshwater sites in Tanzania, and demonstrated strong correspondence between infection status established using eDNA and conventional assays of parasite prevalence in host snails. CONCLUSIONS/SIGNIFICANCE: Collectively, our results suggest that eDNA monitoring is able to detect schistosomes in freshwater bodies, but refinement of the field sampling, storage and assay methods are likely to optimise its performance. We anticipate that environmental DNA-based approaches will help to inform epidemiological studies and contribute to efforts to control and eliminate schistosomiasis in endemic areas.


Assuntos
DNA Ambiental/isolamento & purificação , Água Doce/parasitologia , Schistosoma/classificação , Schistosoma/genética , Schistosoma/isolamento & purificação , Animais , DNA de Helmintos/isolamento & purificação , Monitoramento Ambiental , Genes de Helmintos/genética , Técnicas de Amplificação de Ácido Nucleico/veterinária , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Schistosoma haematobium/genética , Schistosoma haematobium/isolamento & purificação , Schistosoma japonicum/genética , Schistosoma japonicum/isolamento & purificação , Schistosoma mansoni/genética , Schistosoma mansoni/isolamento & purificação , Esquistossomose/epidemiologia , Esquistossomose/parasitologia , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/parasitologia , Caramujos/parasitologia , Especificidade da Espécie , Tanzânia
13.
Parasit Vectors ; 13(1): 63, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051004

RESUMO

BACKGROUND: Schistosomiasis is a neglected tropical disease that infects over 200 million people worldwide. Control measures can benefit from improved surveillance methods in freshwaters, with environmental DNA (eDNA) surveys having the potential to offer effective and rapid detection of schistosomes. However, sampling eDNA directly from natural water bodies can lead to inaccurate estimation of infection risk if schistosome eDNA is rare in the environment. Here we report a xenomonitoring method that allows schistosome infections of host snail species to be determined from eDNA in water used to house those snails. METHODS: Host snail species were collected and placed in containers of water and allowed to shed cercariae, and then water samples were filtered and tested using qPCR assays specific to the African species Schistosoma mansoni and Schistosoma haematobium. We evaluated this "eDNA-based xenomonitoring" approach by experimentally comparing the results to those obtained from direct qPCR screening of tissue sourced from the snails in the experiment. RESULTS: We found that our method accurately diagnosed the presence of S. mansoni-infected snails in all tests, and S. haematobium-infected snails in 92% of tests. Moreover, we found that the abundance of Schistosoma eDNA in experiments was directly dependent on the number and biomass of infected snails. CONCLUSIONS: These results provide a strong indication that this surveillance method combining the utility of eDNA-based monitoring with the reliability of traditional xenomonitoring approaches could be used to accurately assay the presence of Schistosoma species in natural habitats. This approach may be well-suited for epidemiological studies and monitoring in endemic areas, where it can assist schistosomiasis control by indicating infection risk from freshwaters and guiding necessary interventions to eliminate the disease.


Assuntos
DNA Ambiental/análise , Água Doce/parasitologia , Schistosoma/isolamento & purificação , Esquistossomose/veterinária , Caramujos/parasitologia , Microbiologia da Água , Animais , Tanzânia , Clima Tropical
14.
Hydrobiologia ; 832(1): 257-268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880834

RESUMO

Hybridization between introduced and indigenous species can lead to loss of unique genetic resources and precipitate extinction. In Tanzania, the Nile tilapia (Oreochromis niloticus) and blue-spotted tilapia (Oreochromis leucostictus) have been widely introduced to non-native habitats for aquaculture and development of capture fisheries. Here, we aimed to quantify interspecific hybridization between these introduced species and the indigenous species Oreochromis esculentus, Oreochromis jipe and Oreochromis korogwe. In the Pangani basin, several hybrids were observed (O. niloticus × O. jipe, O. leucostictus × O. jipe, O. niloticus × O. korogwe), although hybrids were relatively uncommon within samples relative to purebreds. Hybrids between the native O. jipe × O. korogwe were also observed. In the Lake Victoria basin, no evidence of hybrids was found. Analysis of body shape using geometric morphometrics suggested that although purebreds could be discriminated from one another, hybrids could not be readily identified on body and head shape alone. These results provide the first evidence of hybridization between the introduced species and the Critically Endangered O. jipe in Tanzania. Given uncertainty regarding benefits of introduced species over large-bodied indigenous species in aquaculture and capture fisheries, we suggest that future introductions of hybridization-prone species should be carefully evaluated.

15.
Hydrobiologia ; 832(1): 235-253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880833

RESUMO

From the 1950s onwards, programmes to promote aquaculture and improve capture fisheries in East Africa have relied heavily on the promise held by introduced species. In Tanzania these introductions have been poorly documented. Here we report the findings of surveys of inland water bodies across Tanzania between 2011 and 2017 that clarify distributions of tilapiine cichlids of the genus Oreochromis. We identified Oreochromis from 123 sampling locations, including 14 taxa restricted to their native range and three species that have established populations beyond their native range. Of these three species, the only exotic species found was blue-spotted tilapia (Oreochromis leucostictus), while Nile tilapia (Oreochromis niloticus) and Singida tilapia (Oreochromis esculentus), which are both naturally found within the country of Tanzania, have been translocated beyond their native range. Using our records, we developed models of suitable habitat for the introduced species based on recent (1960-1990) and projected (2050, 2070) East African climate. These models indicated that presence of suitable habitat for these introduced species will persist and potentially expand across the region. The clarification of distributions provided here can help inform the monitoring and management of biodiversity, and inform policy related to the future role of introduced species in fisheries and aquaculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA