Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Conserv Biol ; 27(6): 1201-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24299086

RESUMO

Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. Efectos Combinados del Cambio Climático y la Estabilización de Bordes de Ríos Hábitats de Aguas Poco Profundas del Salmón Chinook.


Assuntos
Mudança Climática , Espécies em Perigo de Extinção/legislação & jurisprudência , Salmão/fisiologia , Animais , Ecossistema , Oregon , Dinâmica Populacional , Rios
2.
PLoS One ; 10(4): e0124415, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923327

RESUMO

For widely distributed species at risk, such as Pacific salmon (Oncorhynchus spp.), habitat monitoring is both essential and challenging. Only recently have widespread monitoring programs been implemented for salmon habitat in the Pacific Northwest. Remote sensing data, such as Landsat images, are therefore a useful way to evaluate trends prior to the advent of species-specific habitat monitoring programs. We used annual (1986-2008) land cover maps created from Landsat images via automated algorithms (LandTrendr) to evaluate trends in developed (50-100% impervious) land cover in areas adjacent to five types of habitat utilized by Chinook salmon (O. tshawytscha) in the Puget Sound region of Washington State, U.S.A. For the region as a whole, we found significant increases in developed land cover adjacent to each of the habitat types evaluated (nearshore, estuary, mainstem channel, tributary channel, and floodplain), but the increases were small (<1% total increase from 1986 to 2008). For each habitat type, the increasing trend changed during the time series. In nearshore, mainstem, and floodplain areas, the rate of increase in developed land cover slowed in the latter portion of the time series, while the opposite occurred in estuary and tributary areas. Watersheds that were already highly developed in 1986 tended to have higher rates of development than initially less developed watersheds. Overall, our results suggest that developed land cover in areas adjacent to Puget Sound salmon habitat has increased only slightly since 1986 and that the rate of change has slowed near some key habitat types, although this has occurred within the context of a degraded baseline condition.


Assuntos
Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Monitoramento Ambiental/métodos , Salmão/fisiologia , Animais , Ecossistema , Monitoramento Ambiental/instrumentação , Estuários , Humanos , Rios , Imagens de Satélites/estatística & dados numéricos , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA