Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 37(4): e5087, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168082

RESUMO

The increasing availability of high-performance gradient systems in human MRI scanners has generated great interest in diffusion microstructural imaging applications such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion MRI is attained at strong diffusion weightings b , where the deviation from the expected 1 / b scaling in white matter yields a finite transverse diffusivity, which is then translated into an axon diameter estimate. While axons are usually modeled as perfectly straight, impermeable cylinders, local variations in diameter (caliber variation or beading) and direction (undulation) are known to influence axonal diameter estimates and have been observed in microscopy data of human axons. In this study, we performed Monte Carlo simulations of diffusion in axons reconstructed from three-dimensional electron microscopy of a human temporal lobe specimen using simulated sequence parameters matched to the maximal gradient strength of the next-generation Connectome 2.0 human MRI scanner ( ≲ 500 mT/m). We show that axon diameter estimation is accurate for nonbeaded, nonundulating fibers; however, in fibers with caliber variations and undulations, the axon diameter is heavily underestimated due to caliber variations, and this effect overshadows the known overestimation of the axon diameter due to undulations. This unexpected underestimation may originate from variations in the coarse-grained axial diffusivity due to caliber variations. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Axônios/patologia , Imageamento por Ressonância Magnética , Microscopia Eletrônica
2.
MAGMA ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635150

RESUMO

Neurodegenerative disorders, including Multiple Sclerosis (MS), are heterogenous disorders which affect the myelin sheath of the central nervous system (CNS). Magnetic Resonance Imaging (MRI) provides a non-invasive method for studying, diagnosing, and monitoring disease progression. As an emerging research area, many studies have attempted to connect MR metrics to underlying pathophysiological presentations of heterogenous neurodegeneration. Most commonly, small animal models are used, including Experimental Autoimmune Encephalomyelitis (EAE), Theiler's Murine Encephalomyelitis (TMEV), and toxin models including cuprizone (CPZ), lysolecithin, and ethidium bromide (EtBr). A contrast and comparison of these models is presented, with focus on the cuprizone model, followed by a review of literature studying neurodegeneration using MRI and the cuprizone model. Conventional MRI methods including T1 Weighted (T1W) and T2 Weighted (T2W) Imaging are mentioned. Quantitative MRI methods which are sensitive to diffusion, magnetization transfer, susceptibility, relaxation, and chemical composition are discussed in relation to studying the CPZ model. Overall, additional studies are needed to improve both the sensitivity and specificity of MRI metrics for underlying pathophysiology of neurodegeneration and the relationships in attempts to clear the clinico-radiological paradox. We therefore propose a multiparametric approach for the investigation of MR metrics for underlying pathophysiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA