Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 12(1): 3820, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264606

RESUMO

Serotonin (5-HT) is an autocrine-paracrine molecule within the mammary gland regulating homeostasis during lactation and triggering involution after milk stasis. Exposure of dairy cows to hyperthermia during the dry period alters mammary gland involution processes leading to reduced subsequent yields. Herein, primary bovine mammary epithelial cells (pBMEC) under thermoneutral (TN, 37 °C) or heat shock (HS, 41.5 °C) conditions were cultured with either 0, 50, 200, or 500 µM 5-Hydroxy-L-tryptophan (5-HTP; 5-HT precursor) for 8-, 12- or 24-h. Expression of 95 genes involved in 5-HT signaling, involution and tight junction regulation were evaluated using a Multiplex RT-qPCR BioMark Dynamic Array Circuit. Different sets of genes were impacted by 5-HTP or temperature, or by their interaction. All 5-HT signaling genes were downregulated after 8-h of HS and then upregulated after 12-h, relative to TN. After 24-h, apoptosis related gene, FASLG, was upregulated by all doses except TN-200 µM 5-HTP, and cell survival gene, FOXO3, was upregulated by HS-50, 200 and 500 µM 5-HTP, suggesting 5-HTP involvement in cell turnover under HS. Supplementing 5-HTP at various concentrations in vitro to pBMEC modulates the expression of genes that might aid in promoting epithelial cell turn-over during involution in dairy cattle under hyperthermia.


Assuntos
5-Hidroxitriptofano , Glândulas Mamárias Animais , 5-Hidroxitriptofano/metabolismo , 5-Hidroxitriptofano/farmacologia , Animais , Bovinos , Suplementos Nutricionais , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Resposta ao Choque Térmico/genética , Lactação/fisiologia , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Triptofano/metabolismo
2.
Front Pharmacol ; 13: 828735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281892

RESUMO

Serotonin is a key regulator of mammary gland homeostasis during lactation. Selective serotonin reuptake inhibitors (SSRIs) are commonly used to treat peripartum depression, but also modulates mammary gland serotonin concentrations and signaling in part through DNA methylation. The objective of this study was to determine mouse mammary transcriptome changes in response to the SSRI fluoxetine and how methyl donor supplementation, achieved by folic acid supplementation, affected the transcriptome. Female C57BL/6J mice were fed either breeder diet (containing 4 mg/kg folic acid) or supplemented diet (containing 24 mg/kg folic acid) beginning 2 weeks prior to mating, then on embryonic day 13 mice were injected daily with either saline or 20 mg/kg fluoxetine. Mammary glands were harvested at peak lactation, lactation day 10, for transcriptomic analysis. Fluoxetine but not folic acid altered circulating serotonin and calcium concentrations, and folic acid reduced mammary serotonin concentrations, however only fluoxetine altered genes in the mammary transcriptome. Fluoxetine treatment altered fifty-six genes. Elovl6 was the most significantly altered gene by fluoxetine treatment along with gene pathways involving fatty acid homeostasis, PPARγ, and adipogenesis, which are critical for milk fat synthesis. Enriched pathways in the mammary gland by fluoxetine revealed pathways including calcium signaling, serotonin receptors, milk proteins, and cellular response to cytokine stimulus which are important for lactation. Although folic acid did not impact specific genes, a less stringent pathway analysis revealed more diffuse effects where folic acid enriched pathways involving negative regulation of gene expression as expected, but additionally enriched pathways involving serotonin, glycolysis, and lactalbumin which are critical for lactation. In conclusion, peripartal SSRI use and folic acid supplementation altered critical genes related to milk synthesis and mammary gland function that are important to a successful lactation. However, folic acid supplementation did not reverse changes in the mammary gland transcriptome altered by peripartal SSRI treatment.

3.
Physiol Rep ; 10(5): e15204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35234346

RESUMO

Women mobilize up to 10% of their bone mass during lactation to provide milk calcium. About 8%-13% of mothers use selective serotonin reuptake inhibitors (SSRI) to treat peripartum depression, but SSRIs independently decrease bone mass. Previously, peripartal use of the SSRI fluoxetine reduced maternal bone mass sustained post-weaning and reduced offspring bone length. To determine whether these effects were fluoxetine-specific or consistent across SSRI compounds, we examined maternal and offspring bone health using the most prescribed SSRI, sertraline. C57BL/6 mice were given 10 mg/kg/day sertraline, from the beginning of pregnancy through the end of lactation. Simultaneously, we treated nulliparous females on the same days as the primiparous groups, resulting in age-matched nulliparous groups. Dams were euthanized at lactation day 10 (peak lactation, n = 7 vehicle; n = 9 sertraline), lactation day 21 (weaning, n = 9 vehicle; n = 9 sertraline), or 3m post-weaning (n = 10 vehicle; n = 10 sertraline) for analysis. Offspring were euthanized at peak lactation or weaning for analysis. We determined that peripartum sertraline treatment decreased maternal circulating calcium concentrations across the treatment period, which was also seen in nulliparous treated females. Sertraline reduced the bone formation marker, procollagen 1 intact N-terminal propeptide, and tended to reduce maternal BV/TV at 3m post-weaning but did not impact maternal or offspring bone health otherwise. Similarly, sertraline did not reduce nulliparous female bone mass. However, sertraline reduced immunofluorescence staining of the tight junction protein, zona occludens in the mammary gland, and altered alveoli morphology, suggesting sertraline may accelerate mammary gland involution. These findings indicate that peripartum sertraline treatment may be a safer SSRI for maternal and offspring bone rather than fluoxetine.


Assuntos
Glândulas Mamárias Humanas , Sertralina , Animais , Cálcio/farmacologia , Feminino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Humanos , Lactação , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Gravidez , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia
4.
Toxics ; 10(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051053

RESUMO

Selective serotonin reuptake inhibitors (SSRI) are the most common antidepressant used by pregnant women; however, they have been associated with adverse pregnancy outcomes and perinatal morbidity in pregnant women and animal models. We investigated the effects of two SSRI, fluoxetine and sertraline, on pregnancy and neonatal outcomes in mice. Wild-type mice were treated daily with low and high doses of fluoxetine (2 and 20 mg/kg) and sertraline (10 and 20 mg/kg) from the day of detection of a vaginal plug until the end of lactation (21 days postpartum). Pregnancy rate was decreased only in the high dose of fluoxetine group. Maternal weight gain was reduced in the groups receiving the high dose of each drug. Number of pups born was decreased in the high dose of fluoxetine and low and high doses of sertraline while the number of pups weaned was decreased in all SSRI-treated groups corresponding to increased neonatal mortality in all SSRI-treated groups. In conclusion, there was a dose-dependent effect of SSRI on pregnancy and neonatal outcomes in a non-depressed mouse model. However, the distinct placental transfer of each drug suggests that the effects of SSRI on pup mortality may be mediated by SSRI-induced placental insufficiency rather than a direct toxic effect on neonatal development and mortality.

5.
Dis Model Mech ; 14(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318329

RESUMO

Benign prostatic hyperplasia/lower urinary tract dysfunction (LUTD) affects nearly all men. Symptoms typically present in the fifth or sixth decade and progressively worsen over the remainder of life. Here, we identify a surprising origin of this disease that traces back to the intrauterine environment of the developing male, challenging paradigms about when this disease process begins. We delivered a single dose of a widespread environmental contaminant present in the serum of most Americans [2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), 1 µg/kg], and representative of a broader class of environmental contaminants, to pregnant mice and observed an increase in the abundance of a neurotrophic factor, artemin, in the developing mouse prostate. Artemin is required for noradrenergic axon recruitment across multiple tissues, and TCDD rapidly increases prostatic noradrenergic axon density in the male fetus. The hyperinnervation persists into adulthood, when it is coupled to autonomic hyperactivity of prostatic smooth muscle and abnormal urinary function, including increased urinary frequency. We offer new evidence that prostate neuroanatomical development is malleable and that intrauterine chemical exposures can permanently reprogram prostate neuromuscular function to cause male LUTD in adulthood.


Assuntos
Dibenzodioxinas Policloradas , Sistema Urinário , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Dibenzodioxinas Policloradas/toxicidade , Gravidez , Próstata , Ratos , Ratos Sprague-Dawley
6.
PLoS One ; 15(10): e0241192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33095824

RESUMO

Mammary-derived serotonin has been implicated in breast-to-bone communication during lactation by increasing parathyroid hormone related-protein (PTHrP) in the mammary gland. It is well established that PTHrP acts on the bone to liberate calcium for milk synthesis during lactation; however, the mechanism of serotonin's regulation of PTHrP has not been fully elucidated. Recently, serotonylation has been shown to be involved in a variety of physiological processes mediated by serotonin. Therefore, we investigated whether serotonylation is involved in serotonin's regulation of PTHrP in the mammary gland using lactogenically differentiated mouse mammary epithelial cells. We investigated the effect of increased intracellular serotonin using the antidepressant fluoxetine or 5-hydroxytryptophan (serotonin precursor), with or without transglutaminase inhibition and the corresponding action on PTHrP induction and activity. Treatment with fluoxetine or 5-hydroxytryptophan significantly increased intracellular serotonin concentrations and subsequently increased PTHrP gene expression, which was reduced with transglutaminase inhibition. Furthermore, we determined that transglutaminase activity is increased with lactogenic differentiation and 5-hydroxytryptophan or fluoxetine treatment. We investigated whether RhoA, Rac1, and Rab4 were potential serotonylation target proteins. We speculate that RhoA is potentially a serotonylation target protein. Our data suggest that serotonin regulates PTHrP induction in part through the process of serotonylation under lactogenic conditions in mouse mammary epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Serotonina/metabolismo , Transglutaminases/metabolismo , 5-Hidroxitriptofano/farmacologia , Animais , Osso e Ossos/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Feminino , Fluoxetina/farmacologia , Proteínas de Ligação ao GTP/agonistas , Lactação/efeitos dos fármacos , Lactação/metabolismo , Glândulas Mamárias Animais/citologia , Camundongos , Prolactina/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase , Regulação para Cima/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA