Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genet Med ; 25(2): 100332, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36520152

RESUMO

PURPOSE: This study aimed to establish the genetic cause of a novel autosomal recessive neurodevelopmental disorder characterized by global developmental delay, movement disorder, and metabolic abnormalities. METHODS: We performed a detailed clinical characterization of 4 unrelated individuals from consanguineous families with a neurodevelopmental disorder. We used exome sequencing or targeted-exome sequencing, cosegregation, in silico protein modeling, and functional analyses of variants in HEK293 cells and Drosophila melanogaster, as well as in proband-derived fibroblast cells. RESULTS: In the 4 individuals, we identified 3 novel homozygous variants in oxoglutarate dehydrogenase (OGDH) (NM_002541.3), which encodes a subunit of the tricarboxylic acid cycle enzyme α-ketoglutarate dehydrogenase. In silico homology modeling predicts that c.566C>T:p.(Pro189Leu) and c.890C>A:p.(Ser297Tyr) variants interfere with the structure and function of OGDH. Fibroblasts from individual 1 showed that the p.(Ser297Tyr) variant led to a higher degradation rate of the OGDH protein. OGDH protein with p.(Pro189Leu) or p.(Ser297Tyr) variants in HEK293 cells showed significantly lower levels than the wild-type protein. Furthermore, we showed that expression of Drosophila Ogdh (dOgdh) carrying variants homologous to p.(Pro189Leu) or p.(Ser297Tyr), failed to rescue developmental lethality caused by loss of dOgdh. SpliceAI, a variant splice predictor, predicted that the c.935G>A:p.(Arg312Lys)/p.(Phe264_Arg312del) variant impacts splicing, which was confirmed through a mini-gene assay in HEK293 cells. CONCLUSION: We established that biallelic variants in OGDH cause a neurodevelopmental disorder with metabolic and movement abnormalities.


Assuntos
Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Transtornos do Neurodesenvolvimento/genética
2.
Hum Genet ; 137(11-12): 905-909, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368667

RESUMO

Lowry-Wood syndrome (LWS) is a skeletal dysplasia characterized by multiple epiphyseal dysplasia associated with microcephaly, developmental delay and intellectual disability, and eye involvement. Pathogenic variants in RNU4ATAC, an RNA of the minor spliceosome important for the excision of U12-dependent introns, have been recently associated with LWS. This gene had previously also been associated with microcephalic osteodysplastic primordial dwarfism (MOPD) and Roifman syndrome (RS), two distinct conditions which share with LWS some skeletal and neurological anomalies. We performed exome sequencing in two individuals with Lowry-Wood syndrome. We report RNU4ATAC pathogenic variants in two further patients. Moreover, an analysis of all RNU4ATAC variants reported so far showed that FitCons scores for nucleotides mutated in the more severe MOPD are higher than RS or LWS and that they were more frequently located in the 5' Stem-Loop of the RNA critical for the formation of the U4/U6.U5 tri-snRNP complex, whereas the variants are more dispersed in the other conditions. We are thus confirming that RNU4ATAC is the gene responsible for LWS and provide a genotype-phenotype correlation analysis.


Assuntos
Predisposição Genética para Doença , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , Microcefalia/genética , Osteocondrodisplasias/genética , RNA Nuclear Pequeno/genética , Adulto , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Estudos de Associação Genética , Genótipo , Transtornos do Crescimento/patologia , Humanos , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/patologia , Mutação , Osteocondrodisplasias/patologia , Fenótipo
3.
JIMD Rep ; 63(1): 3-10, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028265

RESUMO

OBJECTIVE: To report an adolescent with infantile-onset carnitine palmitoyltransferase 2 (CPT2) deficiency and cerebral malformations and to review the occurrence of brain malformations in CPT2 deficiency. The patient presented clinically at age 5 months with dehydration and hepatomegaly. He also has an unrelated condition, X-linked nephrogenic diabetes insipidus. He had recurrent rhabdomyolysis but normal psychomotor development. At age 17 years, he developed spontaneous focal seizures. Cerebral magnetic resonance imaging revealed extensive left temporo-parieto-occipital polymicrogyria, white matter heterotopias, and schizencephaly. Neuronal migration defects were previously reported in lethal neonatal CPT2 deficiency but not in later-onset forms. DESIGN AND METHODS: We searched PubMed, Google Scholar, and the bibliographies of the articles found by these searches, for cerebral malformations in CPT2 deficiency. All antenatal, neonatal, infantile, and adult-onset cases were included. Exclusion criteria included insufficient information about age of clinical onset and lack of confirmation of CPT2 deficiency by enzymatic assay or genetic testing. For each report, we noted the presence of cerebral malformations on brain imaging or pathological examination. RESULTS: Of 26 neonatal-onset CPT2-deficient patients who met the inclusion criteria, brain malformations were reported in 16 (61.5%). In 19 infantile-onset cases, brain malformations were not reported, but only 3 of the 19 reports (15.8%) include brain imaging or neuropathology data. In 276 adult-onset cases, no brain malformations were reported. CONCLUSION: To the best of our knowledge, this is the first report of cerebral malformations in an infantile onset CPT2-deficient patient. Brain imaging should be considered in patients with CPTII deficiency and neurological manifestations, even in those with later clinical onset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA