Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Curr Opin Hematol ; 31(3): 155-161, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236999

RESUMO

PURPOSE OF REVIEW: This review summarizes innovations in vascular microphysiological systems (MPS) and discusses the themes that have emerged from recent works. RECENT FINDINGS: Vascular MPS are increasing in complexity and ability to replicate tissue. Many labs use vascular MPS to study transport phenomena such as analyzing endothelial barrier function. Beyond vascular permeability, these models are also being used for pharmacological studies, including drug distribution and toxicity modeling. In part, these studies are made possible due to exciting advances in organ-specific models. Inflammatory processes have also been modeled by incorporating immune cells, with the ability to explore both cell migration and function. Finally, as methods for generating vascular MPS flourish, many researchers have turned their attention to incorporating flow to more closely recapitulate in vivo conditions. SUMMARY: These models represent many different types of tissue and disease states. Some devices have relatively simple geometry and few cell types, while others use complex, multicompartmental microfluidics and integrate several cell types and origins. These 3D models enable us to observe model evolution in real time and perform a plethora of functional assays not possible using traditional cell culture methods.


Assuntos
Microfluídica , Sistemas Microfisiológicos , Humanos , Microfluídica/métodos , Técnicas de Cultura de Células/métodos
2.
Nat Rev Cancer ; 24(3): 216-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238471

RESUMO

Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.


Assuntos
Mecanotransdução Celular , Neoplasias , Humanos , Mecanotransdução Celular/fisiologia , Neoplasias/patologia , Microambiente Tumoral , Proliferação de Células , Epigênese Genética , Metástase Neoplásica , Movimento Celular/fisiologia
3.
Adv Sci (Weinh) ; 11(26): e2400921, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696611

RESUMO

Endothelial programmed death-ligand 1 (PD-L1) expression is higher in tumors than in normal tissues. Also, tumoral vasculatures tend to be leakier than normal vessels leading to a higher trans-endothelial or transmural fluid flow. However, it is not clear whether such elevated transmural flow can control endothelial PD-L1 expression. Here, a new microfluidic device is developed to investigate the relationship between transmural flow and PD-L1 expression in microvascular networks (MVNs). After treating the MVNs with transmural flow for 24 h, the expression of PD-L1 in endothelial cells is upregulated. Additionally, CD8 T cell activation by phytohemagglutinin (PHA) is suppressed when cultured in the MVNs pre-conditioned with transmural flow. Moreover, transmural flow is able to further increase PD-L1 expression in the vessels formed in the tumor microenvironment. Finally, by utilizing blocking antibodies and knock-out assays, it is found that transmural flow-driven PD-L1 upregulation is controlled by integrin αVß3. Overall, this study provides a new biophysical explanation for high PD-L1 expression in tumoral vasculatures.


Assuntos
Antígeno B7-H1 , Microvasos , Regulação para Cima , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Humanos , Microvasos/metabolismo , Microambiente Tumoral , Camundongos , Animais , Células Endoteliais/metabolismo
4.
Biomaterials ; 311: 122686, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38971122

RESUMO

Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell function and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The flow-dependent expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) that incorporate a KLF2-based endothelial cell flow sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that application of flow to MVNs for 48 h resulted in increased expression of the KLF2 reporter, larger vessel diameters, and decreased vascular branching and resistance. Notably, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. MVNs with KLF2-based flow sensors represent a novel, powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.

5.
Adv Healthc Mater ; 12(19): e2202984, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119127

RESUMO

A bidirectional association exists between metastatic dissemination and the hypercoagulable state associated with many types of cancer. As such, clinical studies have provided evidence that markers associated with elevated levels of coagulation and fibrinolysis correlate with decreased patient survival. However, elucidating the mechanisms underpinning the effects of different components of the coagulation system on metastasis formation is challenging both in animal models and 2D models lacking the complex cellular interactions necessary to model both thrombosis and metastasis. Here, an in vitro, 3D, microvascular model for observing the formation of fibrin thrombi is described, which is in turn used to study how different aspects of the hypercoagulable state associated with cancer affect the endothelium. Using this platform, cancer cells expressing ICAM-1 are shown to form a fibrinogen-dependent bridge and transmigrate through the endothelium more effectively. Cancer cells are also demonstrated to interact with fibrin thrombi, using them to adhere, spread, and enhance their extravasation efficiency. Finally, thrombin is also shown to enhance cancer cell extravasation. This system presents a physiologically relevant model of fibrin clot formation in the human microvasculature, enabling in-depth investigation of the cellular interactions between cancer cells and the coagulation system affecting cancer cell extravasation.


Assuntos
Hemostáticos , Neoplasias , Trombose , Animais , Humanos , Coagulação Sanguínea , Fibrina , Fibrinogênio/metabolismo , Hemostáticos/farmacologia , Trombina/metabolismo , Trombina/farmacologia
6.
Lab Chip ; 23(20): 4552-4564, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37771308

RESUMO

Several methods have been developed for generating 3D, in vitro, organ-on-chip models of human vasculature to study vascular function, transport, and tissue engineering. However, many of these existing models lack the hierarchical nature of the arterial-to-capillary-to-venous architecture that is key to capturing a more comprehensive view of the human microvasculature. Here, we present a perfusable, multi-compartmental model that recapitulates the three microvascular compartments to assess various physiological properties such as vessel permeability, vasoconstriction dynamics, and circulating cell arrest and extravasation. Viscous finger patterning and passive pumping create the larger arterial and venular lumens, while the smaller diameter capillary bed vessels are generated through self-assembly. These compartments anastomose and form a perfusable, hierarchical system that portrays the directionality of blood flow through the microvasculature. The addition of collagen channels reduces the apparent permeability of the central capillary region, likely by reducing leakage from the side channels, enabling more accurate measurements of vascular permeability-an important motivation for this study. Furthermore, the model permits modulation of fluid flow and shear stress conditions throughout the system by using hydrostatic pressure heads to apply pressure differentials across either the arteriole or the capillary. This is a pertinent system for modeling circulating tumor or T cell dissemination and extravasation. Circulating cells were found to arrest in areas conducive to physical trapping or areas with the least amount of shear stress, consistent with hemodynamic or mechanical theories of metastasis. Overall, this model captures more features of human microvascular beds and is capable of testing a broad variety of hypotheses.


Assuntos
Microvasos , Neoplasias , Humanos , Engenharia Tecidual/métodos , Colágeno , Dispositivos Lab-On-A-Chip
7.
Adv Healthc Mater ; 12(14): e2201784, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36333913

RESUMO

Previous studies have developed vascularized tumor spheroid models to demonstrate the impact of intravascular flow on tumor progression and treatment. However, these models have not been widely adopted so the vascularization of tumor spheroids in vitro is generally lower than vascularized tumor tissues in vivo. To improve the tumor vascularization level, a new strategy is introduced to form tumor spheroids by adding fibroblasts (FBs) sequentially to a pre-formed tumor spheroid and demonstrate this method with tumor cell lines from kidney, lung, and ovary cancer. Tumor spheroids made with the new strategy have higher FB densities on the periphery of the tumor spheroid, which tend to enhance vascularization. The vessels close to the tumor spheroid made with this new strategy are more perfusable than the ones made with other methods. Finally, chimeric antigen receptor (CAR) T cells are perfused under continuous flow into vascularized tumor spheroids to demonstrate immunotherapy evaluation using vascularized tumor-on-a-chip model. This new strategy for establishing tumor spheroids leads to increased vascularization in vitro, allowing for the examination of immune, endothelial, stromal, and tumor cell responses under static or flow conditions.


Assuntos
Microfluídica , Esferoides Celulares , Humanos , Neovascularização Patológica , Linhagem Celular Tumoral
8.
Nat Commun ; 14(1): 2122, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055433

RESUMO

Targeting DNA methyltransferase 1 (DNMT1) has immunomodulatory and anti-neoplastic activity, especially when paired with cancer immunotherapies. Here we explore the immunoregulatory functions of DNMT1 in the tumor vasculature of female mice. Dnmt1 deletion in endothelial cells (ECs) impairs tumor growth while priming expression of cytokine-driven cell adhesion molecules and chemokines important for CD8+ T-cell trafficking across the vasculature; consequently, the efficacy of immune checkpoint blockade (ICB) is enhanced. We find that the proangiogenic factor FGF2 promotes ERK-mediated DNMT1 phosphorylation and nuclear translocation to repress transcription of the chemokines Cxcl9/Cxcl10 in ECs. Targeting Dnmt1 in ECs reduces proliferation but augments Th1 chemokine production and extravasation of CD8+ T-cells, suggesting DNMT1 programs immunologically anergic tumor vasculature. Our study is in good accord with preclinical observations that pharmacologically disrupting DNMT1 enhances the activity of ICB but suggests an epigenetic pathway presumed to be targeted in cancer cells is also operative in the tumor vasculature.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Feminino , Camundongos , Animais , Citocinas/metabolismo , Células Endoteliais/metabolismo , Internalização do Vírus , Neoplasias/terapia , Neoplasias/metabolismo , Quimiocina CXCL10/metabolismo
9.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961543

RESUMO

Shear stress generated by the flow of blood in the vasculature is a potent regulator of endothelial cell phenotype and vascular structure. While vascular responses to flow are complex and context-dependent, endothelial cell signaling in response to shear stress induced by laminar flows is coordinated by the transcription factor KLF2. The expression of KLF2 in endothelial cells is associated with a quiescent, anti-inflammatory phenotype and has been well characterized in two-dimensional systems, but has not been studied in three-dimensional in vitro systems. Here we develop engineered microvascular networks (MVNs) with a KLF2-based endothelial cell sensor within a microfluidic chip, apply continuous flow using an attached microfluidic pump, and study the effects of this flow on vascular structure and function. We found that culture of MVNs exposed to flow for 48 hours that resulted in increased expression of the KLF2-GFP-reporter display larger vessel diameters and decreased vascular branching and resistance. Additionally, vessel diameters after the application of flow were independent of initial MVN morphologies. Finally, we found that MVNs exposed to flow have improved vascular barrier function and decreased platelet adhesion. The MVNs with KLF2-based flow sensors represent a powerful tool for evaluating the structural and functional effects of flow on engineered three-dimensional vascular systems.

10.
Cancers (Basel) ; 14(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892819

RESUMO

Cell therapies, including adoptive immune cell therapies and genetically engineered chimeric antigen receptor (CAR) T or NK cells, have shown promise in treating hematologic malignancies. Yet, immune cell infiltration and expansion has proven challenging in solid tumors due to immune cell exclusion and exhaustion and the presence of vascular barriers. Testing next-generation immune therapies remains challenging in animals, motivating sophisticated ex vivo models of human tumor biology and prognostic assays to predict treatment response in real-time while comprehensively recapitulating the human tumor immune microenvironment (TIME). This review examines current strategies for testing cell-based cancer immunotherapies using ex vivo microphysiological systems and microfluidic technologies. Insights into the multicellular interactions of the TIME will identify novel therapeutic strategies to help patients whose tumors are refractory or resistant to current immunotherapies. Altogether, these microphysiological systems (MPS) have the capability to predict therapeutic vulnerabilities and biological barriers while studying immune cell infiltration and killing in a more physiologically relevant context, thereby providing important insights into fundamental biologic mechanisms to expand our understanding of and treatments for currently incurable malignancies.

11.
Immuno-oncol Insights ; 3(8): 379-398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37132013

RESUMO

Immunotherapy has demonstrated great success in clinical treatment, especially for cancer care. Here we review preclinical models, including cell lines, three dimensional (3D) cultures, and mouse models to support the need for tools enabling the development of novel immune-oncology (I-O) therapies. While in vitro studies have the advantage of being relatively simpler, faster, and higher throughput than in vivo models, they must be designed carefully to recapitulate the biological conditions that influence drug efficacy. The growing prevalence of 3D in vitro and ex vivo models has enabled screening and mechanistic studies in more complex, tissue-like environments containing multiple interacting cell types. On the other hand, syngeneic mouse models have been instrumental in the historical development of immunotherapies and remain an important tool in drug development, despite lacking fidelity to certain aspects of human physiology and pathology. Xenograft and humanized mouse models address some of these challenges, yet present limitations of their own. Successful development and translation of new I-O therapies will likely require thoughtful combination of several of these preclinical models, and we aim to help research and development scientists utilize the appropriate tools and technologies to facilitate rapid transition from preclinical evaluation to clinical trials.

12.
Small Methods ; 6(6): e2200143, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35373502

RESUMO

Micropost-based microfluidic devices are widely used for microvascular network (MVN) formation in diverse research fields. However, consistently generating perfusable MVNs of physiological morphology and dimension has proven to be challenging. Here, how initial seeding parameters determine key characteristics of MVN formation is investigated and a robust two-step seeding strategy to generate perfusable physiological MVNs in microfluidic devices is established.


Assuntos
Microvasos , Neovascularização Fisiológica , Dispositivos Lab-On-A-Chip , Neovascularização Fisiológica/fisiologia
13.
iScience ; 24(1): 101985, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490895

RESUMO

This review describes recent research that has advanced our understanding of the role of immune cells in the tumor microenvironment (TME) using advanced 3D in vitro models and engineering approaches. The TME can hinder effective eradication of tumor cells by the immune system, but immunotherapy has been able to reverse this effect in some cases. However, patient-to-patient variability in response suggests that we require deeper understanding of the mechanistic interactions between immune and tumor cells to improve response and develop novel therapeutics. Reconstruction of the TME using engineered 3D models allows high-resolution observation of cell interactions while allowing control of conditions such as hypoxia, matrix stiffness, and flow. Moreover, patient-derived organotypic models are an emerging tool for prediction of drug efficacy. This review highlights the importance of modeling and understanding the immune TME and describes new tools for identifying new biological targets, drug testing, and strategies for personalized medicine.

14.
J Biomech ; 119: 110330, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33631662

RESUMO

Advances in microphysiological systems have prompted the need for long-term cell culture under physiological flow conditions. Conventional laboratory pumps typically lack the ability to deliver cell culture media at the low flow rates required to meet the physiological ranges of fluid flow, and are often pulsatile or require flow reversal. Here, a microfluidic-based pump is presented, which allows for the controlled delivery of media for vascular microphysiological applications. The performance of the pump was characterized in a range of microfluidic systems, including straight channels of varying dimensions and self-assembled microvascular networks. A theoretical framework was developed based on lumped element analysis to predict the performance of the pump for different fluidic configurations and a finite element model of the included check-valves. The use of the pump for microvascular physiological studies demonstrated the utility of this system to recapitulate vascular fluid transport phenomena in microphysiological systems, which may find applications in disease models and drug screening.


Assuntos
Técnicas Analíticas Microfluídicas , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Dispositivos Lab-On-A-Chip , Microfluídica
15.
Biomaterials ; 276: 121032, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303155

RESUMO

Human umbilical vein endothelial cells (HUVECs) and stromal cells, such as human lung fibroblasts (FBs), have been widely used to generate functional microvascular networks (µVNs) in vitro. However, primary cells derived from different donors have batch-to-batch variations and limited lifespans when cultured in vitro, which hampers the reproducibility of µVN formation. Here, we immortalize HUVECs and FBs by exogenously expressing human telomerase reverse transcriptase (hTERT) to obtain stable endothelial cell and FB sources for µVN formation in vitro. Interestingly, we find that immortalized HUVECs can only form functional µVNs with immortalized FBs from earlier passages but not from later passages. Mechanistically, we show that Thy1 expression decreases in FBs from later passages. Compared to Thy1 negative FBs, Thy1 positive FBs express higher IGFBP2, IGFBP7, and SPARC, which are important for angiogenesis and lumen formation during vasculogenesis in 3D. Moreover, Thy1 negative FBs physically block microvessel openings, reducing the perfusability of µVNs. Finally, by culturing immortalized FBs on gelatin-coated surfaces in serum-free medium, we are able to maintain the majority of Thy1 positive immortalized FBs to support perfusable µVN formation. Overall, we establish stable cell sources for µVN formation and characterize the functions of Thy1 positive and negative FBs in vasculogenesis in vitro.


Assuntos
Microfluídica , Telomerase , Diferenciação Celular , Células Cultivadas , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Reprodutibilidade dos Testes
16.
Int J Biomed Imaging ; 2020: 7862089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089667

RESUMO

The purpose of this study is to determine if microvascular tortuosity can be used as an imaging biomarker for the presence of tumor-associated angiogenesis and if imaging this biomarker can be used as a specific and sensitive method of locating solid tumors. Acoustic angiography, an ultrasound-based microvascular imaging technology, was used to visualize angiogenesis development of a spontaneous mouse model of breast cancer (n = 48). A reader study was used to assess visual discrimination between image types, and quantitative methods utilized metrics of tortuosity and spatial clustering for tumor detection. The reader study resulted in an area under the curve of 0.8, while the clustering approach resulted in the best classification with an area under the curve of 0.95. Both the qualitative and quantitative methods produced a correlation between sensitivity and tumor diameter. Imaging of vascular geometry with acoustic angiography provides a robust method for discriminating between tumor and healthy tissue in a mouse model of breast cancer. Multiple methods of analysis have been presented for a wide range of tumor sizes. Application of these techniques to clinical imaging could improve breast cancer diagnosis, as well as improve specificity in assessing cancer in other tissues. The clustering approach may be beneficial for other types of morphological analysis beyond vascular ultrasound images.

17.
Front Immunol ; 11: 2090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013881

RESUMO

Intratumoral recruitment of immune cells following innate immune activation is critical for anti-tumor immunity and involves cytosolic dsDNA sensing by the cGAS/STING pathway. We have previously shown that KRAS-LKB1 (KL) mutant lung cancer, which is resistant to PD-1 blockade, exhibits silencing of STING, impaired tumor cell production of immune chemoattractants, and T cell exclusion. Since the vasculature is also a critical gatekeeper of immune cell infiltration into tumors, we developed a novel microfluidic model to study KL tumor-vascular interactions. Notably, dsDNA priming of LKB1-reconstituted tumor cells activates the microvasculature, even when tumor cell STING is deleted. cGAS-driven extracellular export of 2'3' cGAMP by cancer cells activates STING signaling in endothelial cells and cooperates with type 1 interferon to increase vascular permeability and expression of E selectin, VCAM-1, and ICAM-1 and T cell adhesion to the endothelium. Thus, tumor cell cGAS-STING signaling not only produces T cell chemoattractants, but also primes tumor vasculature for immune cell escape.


Assuntos
Células Endoteliais/metabolismo , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Endoteliais/patologia , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Nucleotídeos Cíclicos/genética
18.
Ultrasound Med Biol ; 45(2): 539-548, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30509785

RESUMO

Dynamic contrast-enhanced ultrasound (DCE-US) has been proposed as a powerful tool for cancer diagnosis by estimation of perfusion and dispersion parameters reflecting angiogenic vascular changes. This work was aimed at identifying which vascular features are reflected by the estimated perfusion and dispersion parameters through comparison with acoustic angiography (AA). AA is a high-resolution technique that allows quantification of vascular morphology. Three-dimensional AA and 2-D DCE-US bolus acquisitions were used to monitor the growth of fibrosarcoma tumors in nine rats. AA-derived vascular properties were analyzed along with DCE-US perfusion and dispersion to investigate the differences between tumor and control and their evolution in time. AA-derived microvascular density and DCE-US perfusion exhibited good agreement, confirmed by their spatial distributions. No vascular feature was correlated with dispersion. Yet, dispersion provided better cancer classification than perfusion. We therefore hypothesize that dispersion characterizes vessels that are smaller than those visible with AA.


Assuntos
Meios de Contraste , Fibrossarcoma/irrigação sanguínea , Fibrossarcoma/diagnóstico por imagem , Aumento da Imagem/métodos , Ultrassonografia/métodos , Acústica , Angiografia/métodos , Animais , Modelos Animais de Doenças , Imageamento Tridimensional/métodos , Ratos , Ratos Endogâmicos F344
19.
Ultrasound Med Biol ; 43(12): 2939-2946, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28982628

RESUMO

Screening with mammography has been found to increase breast cancer survival rates by about 20%. However, the current system in which mammography is used to direct patients toward biopsy or surgical excision also results in relatively high rates of unnecessary biopsy, as 66.8% of biopsies are benign. A non-ionizing radiation imaging approach with increased specificity might reduce the rate of unnecessary biopsies. Quantifying the vascular characteristics within and surrounding lesions represents one potential target for assessing likelihood of malignancy via imaging. In this clinical note, we describe the translation of a contrast-enhanced ultrasound technique, acoustic angiography, to human imaging. We illustrate the feasibility of this technique with initial studies in imaging the hand, wrist and breast using Definity microbubble contrast agent and a mechanically steered prototype dual-frequency transducer in healthy volunteers. Finally, this approach was used to image pre-biopsy Breast Imaging Reporting and Data System (BI-RADS) 4 and 5 lesions <2 cm in depth in 11 patients. Results indicate that sensitivity and spatial resolution are sufficient to image vessels as small as 0.2 mm in diameter at depths of ~15 mm in the human breast. Challenges observed include motion artifacts, as well as limited depth of field and sensitivity, which could be improved by correction algorithms and improved transducer technologies.


Assuntos
Mama/irrigação sanguínea , Meios de Contraste , Fluorocarbonos , Mãos/irrigação sanguínea , Aumento da Imagem/métodos , Ultrassonografia/métodos , Acústica , Angiografia , Mama/anatomia & histologia , Estudos de Viabilidade , Feminino , Mãos/anatomia & histologia , Humanos , Masculino , Microbolhas , Valores de Referência , Sensibilidade e Especificidade , Punho/anatomia & histologia , Punho/irrigação sanguínea
20.
Mol Imaging Biol ; 19(2): 194-202, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27519522

RESUMO

PURPOSE: The purposes of the present study is to evaluate a new ultrasound molecular imaging approach in its ability to image a preclinical tumor model and to investigate the capacity to visualize and quantify co-registered microvascular and molecular imaging volumes. PROCEDURES: Molecular imaging using the new technique was compared with a conventional ultrasound molecular imaging technique (multi-pulse imaging) by varying the injected microbubble dose and scanning each animal using both techniques. Each of the 14 animals was randomly assigned one of three doses; bolus dose was varied, and the animals were imaged for three consecutive days so that each animal received every dose. A microvascular scan was also acquired for each animal by administering an infusion of nontargeted microbubbles. These scans were paired with co-registered molecular images (VEGFR2-targeted microbubbles), the vessels were segmented, and the spatial relationships between vessels and VEGFR2 targeting locations were analyzed. In five animals, an additional scan was performed in which the animal received a bolus of microbubbles targeted to E- and P-selectins. Vessel tortuosity as a function of distance from VEGF and selectin targeting was analyzed in these animals. RESULTS: Although resulting differences in image intensity due to varying microbubble dose were not significant between the two lowest doses, superharmonic imaging had significantly higher contrast-to-tissue ratio (CTR) than multi-pulse imaging (mean across all doses 13.98 dB for molecular acoustic angiography vs. 0.53 dB for multi-pulse imaging; p = 4.9 × 10-10). Analysis of registered microvascular and molecular imaging volumes indicated that vessel tortuosity decreases with increasing distance from both VEGFR2- and selectin-targeting sites. CONCLUSIONS: Molecular acoustic angiography (superharmonic molecular imaging) exhibited a significant increase in CTR at all doses tested due to superior rejection of tissue artifact signals. Due to the high resolution of acoustic angiography molecular imaging, it is possible to analyze spatial relationships in aligned microvascular and molecular superharmonic imaging volumes. Future studies are required to separate the effects of biomarker expression and blood flow kinetics in comparing local tortuosity differences between different endothelial markers such as VEGFR2, E-selectin, and P-selectin.


Assuntos
Acústica , Angiografia/métodos , Imagem Molecular/métodos , Neoplasias/irrigação sanguínea , Neoplasias/diagnóstico por imagem , Animais , Meios de Contraste/química , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Microvasos/patologia , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA