Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cereb Cortex ; 29(10): 4334-4346, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30590426

RESUMO

erbb4 is a known susceptibility gene for schizophrenia. Chandelier cells (ChCs, also known as axo-axonic cells) are a distinct GABAergic interneuron subtype that exclusively target the axonal initial segment, which is the site of pyramidal neuron action potential initiation. ChCs are a source of ErbB4 expression and alterations in ChC-pyramidal neuron connectivity occur in the medial prefrontal cortex (mPFC) of schizophrenic patients and animal models of schizophrenia. However, the contribution of ErbB4 in mPFC ChCs to the pathogenesis of schizophrenia remains unknown. By conditional deletion or knockdown of ErbB4 from mPFC ChCs, we demonstrated that ErbB4 deficits led to impaired ChC-pyramidal neuron connections and cognitive dysfunctions. Furthermore, the cognitive dysfunctions were normalized by L-838417, an agonist of GABAAα2 receptors enriched in the axonal initial segment. Given that cognitive dysfunctions are a core symptom of schizophrenia, our results may provide a new perspective for understanding the etiology of schizophrenia and suggest that GABAAα2 receptors may be potential pharmacological targets for its treatment.


Assuntos
Disfunção Cognitiva/fisiopatologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/fisiologia , Receptor ErbB-4/fisiologia , Esquizofrenia/fisiopatologia , Animais , Comportamento Animal , Masculino , Potenciais da Membrana , Camundongos Knockout , Receptor ErbB-4/genética
2.
Biol Psychiatry ; 95(8): 732-744, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678543

RESUMO

BACKGROUND: The ability to differentiate stimuli that predict fear is critical for survival; however, the underlying molecular and circuit mechanisms remain poorly understood. METHODS: We combined transgenic mice, in vivo transsynaptic circuit-dissecting anatomical approaches, optogenetics, pharmacological methods, and electrophysiological recording to investigate the involvement of specific extended amygdala circuits in different fear memory. RESULTS: We identified the projections from central lateral amygdala (CeL) protein kinase C δ (PKCδ)-positive neurons and somatostatin (SST)-positive neurons to GABAergic (gamma-aminobutyric acidergic) and glutamatergic neurons in the ventral part of the bed nucleus of stria terminalis (vBNST). Prolonged optogenetic activation or inhibition of the PKCδCeL-vBNST pathway specifically reduced context fear memory, whereas the SSTCeL-vBNST pathway mainly reduced tone fear memory. Intriguingly, optogenetic manipulation of vBNST neurons that received the projection from PKCδCeL neurons exerted bidirectional regulation of context fear, whereas manipulation of vBNST neurons that received the projection from SSTCeL neurons could bidirectionally regulate both context and tone fear memory. We subsequently demonstrated the presence of δ and κ opioid receptor protein expression within the CeL-vBNST circuits, potentially accounting for the discrepancy between prolonged activation of GABAergic circuits and inhibition of downstream vBNST neurons. Finally, administration of an opioid receptor antagonist cocktail on the PKCδCeL-vBNST or SSTCeL-vBNST pathway successfully restored context or tone fear memory reduction induced by prolonged activation of the circuits. CONCLUSIONS: Together, these findings establish a functional role for distinct CeL-vBNST circuits in the differential regulation and appropriate maintenance of fear.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Núcleo Central da Amígdala , Núcleos Septais , Camundongos , Animais , Neurônios/fisiologia , Medo/fisiologia
3.
Neurosci Bull ; 39(11): 1669-1682, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37368194

RESUMO

The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases, such as depression and anxiety. Meanwhile, the endocannabinoid system plays a crucial role in regulating emotions and mainly functions through the cannabinoid type-1 receptor (CB1R), which is strongly expressed in the amygdala of non-human primates (NHPs). However, it remains largely unknown how the CB1Rs in the amygdala of NHPs regulate mental diseases. Here, we investigated the role of CB1R by knocking down the cannabinoid receptor 1 (CNR1) gene encoding CB1R in the amygdala of adult marmosets through regional delivery of AAV-SaCas9-gRNA. We found that CB1R knockdown in the amygdala induced anxiety-like behaviors, including disrupted night sleep, agitated psychomotor activity in new environments, and reduced social desire. Moreover, marmosets with CB1R-knockdown had up-regulated plasma cortisol levels. These results indicate that the knockdown of CB1Rs in the amygdala induces anxiety-like behaviors in marmosets, and this may be the mechanism underlying the regulation of anxiety by CB1Rs in the amygdala of NHPs.


Assuntos
Callithrix , Canabinoides , Animais , Receptores de Canabinoides , Ansiedade , Tonsila do Cerebelo , Fenótipo
4.
Neurosci Bull ; 38(6): 565-575, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35080731

RESUMO

Licking behavior is important for water intake. The deep mesencephalic nucleus (DpMe) has been implicated in instinctive behaviors. However, whether the DpMe is involved in licking behavior and the precise neural circuit behind this behavior remains unknown. Here, we found that the activity of the DpMe decreased during water intake. Inhibition of vesicular glutamate transporter 2-positive (VGLUT2+) neurons in the DpMe resulted in increased water intake. Somatostatin-expressing (SST+), but not protein kinase C-δ-expressing (PKC-δ+), GABAergic neurons in the central amygdala (CeA) preferentially innervated DpMe VGLUT2+ neurons. The SST+ neurons in the CeA projecting to the DpMe were activated at the onset of licking behavior. Activation of these CeA SST+ GABAergic neurons, but not PKC-δ+ GABAergic neurons, projecting to the DpMe was sufficient to induce licking behavior and promote water intake. These findings redefine the roles of the DpMe and reveal a novel CeASST-DpMeVGLUT2 circuit that regulates licking behavior and promotes water intake.


Assuntos
Núcleo Central da Amígdala , Animais , Comportamento Animal , Neurônios GABAérgicos/fisiologia , Mesencéfalo/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
5.
Nat Neurosci ; 25(12): 1651-1663, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36446933

RESUMO

Anxiety-like behaviors in mice include social avoidance and avoidance of bright spaces. Whether these features are distinctly regulated is unclear. We demonstrate that in mice, social and anxiogenic stimuli, respectively, increase and decrease serotonin (5-HT) levels in basal amygdala (BA). In dorsal raphe nucleus (DRN), 5-HT∩vGluT3 neurons projecting to BA parvalbumin (DRN5-HT∩vGluT3-BAPV) and pyramidal (DRN5-HT∩vGluT3-BAPyr) neurons have distinct intrinsic properties and gene expression and respond to anxiogenic and social stimuli, respectively. Activation of DRN5-HT∩vGluT3→BAPV inhibits 5-HT release via GABAB receptors on serotonergic terminals in BA, inducing social avoidance and avoidance of bright spaces. Activation of DRN5-HT∩vGluT3→BA neurons inhibits two subsets of BAPyr neurons via 5-HT1A receptors (HTR1A) and 5-HT1B receptors (HTR1B). Pharmacological inhibition of HTR1A and HTR1B in BA induces avoidance of bright spaces and social avoidance, respectively. These findings highlight the functional significance of heterogenic inputs from DRN to BA subpopulations in the regulation of separate anxiety-related behaviors.


Assuntos
Transtornos de Ansiedade , Complexo Nuclear Basolateral da Amígdala , Serotonina , Animais , Camundongos , Tonsila do Cerebelo , Ansiedade , Receptores de GABA-B
6.
Elife ; 92020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32420873

RESUMO

Methyl-CpG-binding protein 2 (MeCP2) encoded by the MECP2 gene is a transcriptional regulator whose mutations cause Rett syndrome (RTT). Mecp2-deficient mice show fear regulation impairment; however, the cellular and molecular mechanisms underlying this abnormal behavior are largely uncharacterized. Here, we showed that Mecp2 gene deficiency in cholinergic interneurons of the nucleus accumbens (NAc) dramatically impaired fear learning. We further found that spontaneous activity of cholinergic interneurons in Mecp2-deficient mice decreased, mediated by enhanced inhibitory transmission via α2-containing GABAA receptors. With MeCP2 restoration, opto- and chemo-genetic activation, and RNA interference in ChAT-expressing interneurons of the NAc, impaired fear retrieval was rescued. Taken together, these results reveal a previously unknown role of MeCP2 in NAc cholinergic interneurons in fear regulation, suggesting that modulation of neurons in the NAc may ameliorate fear-related disorders.


Assuntos
Neurônios Colinérgicos/metabolismo , Medo/fisiologia , Interneurônios/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Receptores de GABA-A/metabolismo , Animais , Modelos Animais de Doenças , Aprendizagem/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleo Accumbens/metabolismo , Interferência de RNA
7.
Nat Med ; 25(2): 350, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30700866

RESUMO

In the version of this article originally published, there were several errors in Fig. 4. In Fig. 4a, the title read '3D repeated optical inhibition after CSDS.' It should have read '3-day repeated optical inhibition after CSDS.' In Fig. 4c, two labels that should have been aligned with the time axis appeared in the wrong place in the figure. The ticks labeled 'SI' and 'Fiber implant' should have also been labeled with '10' and '14,' respectively. Additionally, in Fig. 4j, a label that should have been aligned with the time axis appeared in the wrong place in the figure. The tick labeled 'Fiber implant' should have also been labeled with '14.' The errors have been corrected in the print, PDF and HTML versions of the manuscript.

8.
Nat Med ; 25(2): 337-349, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643290

RESUMO

Major depressive disorder is a devastating psychiatric disease that afflicts up to 17% of the world's population. Postmortem brain analyses and imaging studies of patients with depression have implicated basal lateral amygdala (BLA) dysfunction in the pathophysiology of depression. However, the circuit and molecular mechanisms through which BLA neurons modulate depressive behavior are largely uncharacterized. Here, in mice, we identified that BLA cholecystokinin (CCK) glutamatergic neurons mediated negative reinforcement via D2 medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and that chronic social defeat selectively potentiated excitatory transmission of the CCKBLA-D2NAc circuit in susceptible mice via reduction of presynaptic cannabinoid type-1 receptor (CB1R). Knockdown of CB1R in the CCKBLA-D2NAc circuit elevated synaptic activity and promoted stress susceptibility. Notably, selective inhibition of the CCKBLA-D2NAc circuit or administration of synthetic cannabinoids in the NAc was sufficient to produce antidepressant-like effects. Overall, our studies reveal the circuit and molecular mechanisms of depression.


Assuntos
Tonsila do Cerebelo/metabolismo , Comportamento Animal , Colecistocinina/metabolismo , Depressão/metabolismo , Ácido Glutâmico/metabolismo , Neurônios Aferentes/metabolismo , Núcleo Accumbens/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Regulação para Baixo , Masculino , Camundongos Endogâmicos C57BL , Optogenética , Estresse Psicológico/metabolismo , Sinapses/metabolismo
9.
Sci Rep ; 7(1): 141, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28273943

RESUMO

Previous studies have shown that the neuregulin 1 (NRG1)-ErbB4 signaling pathway may regulate the excitability of fast-spiking neurons in the frontal cortex and participate in primary epilepsy pathogenesis. However, the exact roles and mechanism for NRG1/ErbB4 in human symptomatic epilepsy are still unclear. Using fresh human symptomatic epilepsy tissues, we found that the protein levels of NRG1 and ErbB4 were significantly increased in the temporal cortex. In addition, NRG1-ErbB4 signaling suppressed phosphorylation of GluN2B at position 1472 by Src kinase, and decreased levels of phosphorylation level of GluN2B and Src were detected in human symptomatic epilepsy tissues. Our study revealed a critical role of the NRG1-ErbB4 signaling pathway in symptomatic epilepsy, which is different from that in primary epilepsy, and we propose that the NRG1-ErbB4 signaling may act as a homeostasis modulator that protects the brain from aggravation of epileptiform activity.


Assuntos
Epilepsia/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-4/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Regulação para Cima , Adulto , Epilepsia/cirurgia , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Receptores de N-Metil-D-Aspartato/química , Transdução de Sinais , Lobo Temporal/metabolismo , Quinases da Família src/metabolismo
10.
Cell Res ; 26(6): 728-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27103432

RESUMO

Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes.


Assuntos
Neurônios Colinérgicos/metabolismo , Hipocampo/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Núcleo Caudado/metabolismo , Suscetibilidade a Doenças , Deleção de Genes , Hipocampo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Nicotina/farmacologia , Fenótipo , Prosencéfalo/metabolismo , Síndrome de Rett/complicações , Convulsões/complicações , Convulsões/patologia , Transdução de Sinais/efeitos dos fármacos
11.
CNS Neurosci Ther ; 19(1): 20-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23082997

RESUMO

AIM: To investigate the mechanism of endoplasmic reticulum (ER) stress-induced apoptosis as well as the protective action of basic fibroblast growth factor (bFGF) both in vivo and in vitro. METHODS AND RESULTS: ER stress-induced apoptosis was involved in the injuries of spinal cord injury (SCI) model rat. bFGF administration improved the recovery and increased the survival of neurons in spinal cord lesions in model rat. The protective effect of bFGF is related to the inhibition of CHOP, GRP78 and caspase-12, which are ER stress-induced apoptosis response proteins. bFGF administration also increased the survival of neurons and the expression of growth-associated protein 43 (GAP43), which is related to neural regeneration. The protective effect of bFGF is related to the activation of downstream signals, PI3K/Akt/GSK-3ß and ERK1/2, especially in the ER stress cell model. CONCLUSIONS: This is the first study to illustrate that the role of bFGF in SCI recovery is related to the inhibition of ER stress-induced cell death via the activation of downstream signals. Our work also suggested a new trend for bFGF drug development in central neural system injuries, which are involved in chronic ER stress-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Neurônios/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal , Animais , Caspase 12/metabolismo , Modelos Animais de Doenças , Feminino , Proteína GAP-43/metabolismo , Proteínas de Choque Térmico/metabolismo , Marcação In Situ das Extremidades Cortadas , Locomoção/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo , Fator de Transcrição CHOP/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA