Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 184(2): 352-369.e23, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33357448

RESUMO

Repetitive elements (REs) compose ∼50% of the human genome and are normally transcriptionally silenced, although the mechanism has remained elusive. Through an RNAi screen, we identified FBXO44 as an essential repressor of REs in cancer cells. FBXO44 bound H3K9me3-modified nucleosomes at the replication fork and recruited SUV39H1, CRL4, and Mi-2/NuRD to transcriptionally silence REs post-DNA replication. FBXO44/SUV39H1 inhibition reactivated REs, leading to DNA replication stress and stimulation of MAVS/STING antiviral pathways and interferon (IFN) signaling in cancer cells to promote decreased tumorigenicity, increased immunogenicity, and enhanced immunotherapy response. FBXO44 expression inversely correlated with replication stress, antiviral pathways, IFN signaling, and cytotoxic T cell infiltration in human cancers, while a FBXO44-immune gene signature correlated with improved immunotherapy response in cancer patients. FBXO44/SUV39H1 were dispensable in normal cells. Collectively, FBXO44/SUV39H1 are crucial repressors of RE transcription, and their inhibition selectively induces DNA replication stress and viral mimicry in cancer cells.


Assuntos
Replicação do DNA/genética , Proteínas F-Box/metabolismo , Neoplasias/genética , Sequências Repetitivas de Ácido Nucleico/genética , Adulto , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Interferons/metabolismo , Lisina/metabolismo , Masculino , Metilação , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Nucleossomos/metabolismo , Transdução de Sinais , Transcrição Gênica , Resultado do Tratamento
2.
Mol Cell ; 82(6): 1123-1139.e8, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35182481

RESUMO

A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/ß, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.


Assuntos
Proteínas F-Box , Proteína 7 com Repetições F-Box-WD , Neoplasias , Animais , Linhagem Celular Tumoral , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteínas de Homeodomínio/genética , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Neoplasias/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Tirosina Fosfatases/genética , Ubiquitina/metabolismo
4.
Dev Cell ; 57(12): 1466-1481.e6, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35659339

RESUMO

Dysregulated growth factor receptor pathways, RNA modifications, and metabolism each promote tumor heterogeneity. Here, we demonstrate that platelet-derived growth factor (PDGF) signaling induces N6-methyladenosine (m6A) accumulation in glioblastoma (GBM) stem cells (GSCs) to regulate mitophagy. PDGF ligands stimulate early growth response 1 (EGR1) transcription to induce methyltransferase-like 3 (METTL3) to promote GSC proliferation and self-renewal. Targeting the PDGF-METTL3 axis inhibits mitophagy by regulating m6A modification of optineurin (OPTN). Forced OPTN expression phenocopies PDGF inhibition, and OPTN levels portend longer survival of GBM patients; these results suggest a tumor-suppressive role for OPTN. Pharmacologic targeting of METTL3 augments anti-tumor efficacy of PDGF receptor (PDGFR) and mitophagy inhibitors in vitro and in vivo. Collectively, we define PDGF signaling as an upstream regulator of oncogenic m6A regulation, driving tumor metabolism to promote cancer stem cell maintenance, highlighting PDGF-METTL3-OPTN signaling as a GBM therapeutic target.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adenosina/análogos & derivados , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Metiltransferases/metabolismo , Mitofagia , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia
5.
Sci Transl Med ; 14(664): eabn3586, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36170444

RESUMO

Chronic pancreatitis (CP) is characterized by progressive fibrosis and exocrine dysregulation, which have long been considered irreversible. As a peripheral oscillator, the pancreas harbors autonomous and self-sustained timekeeping systems in both its endocrine and exocrine compartments, although the role of the latter remains poorly understood. By using different models of CP established in mice with dysfunctional pancreatic clocks, we found that the local clock played an important role in CP pathology, and genetic or external disruption of the pancreatic clock exacerbated fibrogenesis and exocrine insufficiency. Mechanistically, an impaired retinoic acid receptor-related orphan receptor A (Rora)/nuclear receptor subfamily 1, group D, member 1 (Nr1d1)/aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) loop, called the circadian stabilizing loop, resulted in the deficiency of pancreatic Bmal1, which was responsible for controlling the fibrogenic properties of pancreatic stellate cells (PSCs) and for rewiring the function of acinar cells in a clock-TGF signaling-IL-11/IL-11RA axis-dependent manner. During PSC activation, the antagonistic interaction between Nr1d1 and Rora was unbalanced in response to the loss of cytoplasmic retinoid-containing lipid droplets. Patients with CP also exhibited reduced production of endogenous melatonin. Enhancing the clock through pharmacological restoration of the circadian stabilizing loop using a combination of melatonin and the Rora agonist SR1078 attenuated intrapancreatic pathological changes in mouse models of CP. Collectively, this study identified a protective role of the pancreatic clock against pancreatic fibrosis and exocrine dysfunction. Pancreatic clock-targeted therapy may represent a potential strategy to treat CP.


Assuntos
Melatonina , Pancreatite Crônica , Fatores de Transcrição ARNTL , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto , Fibrose , Interleucina-11/uso terapêutico , Melatonina/uso terapêutico , Camundongos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Pâncreas , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/patologia , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/uso terapêutico , Retinoides/uso terapêutico
6.
Cancer Discov ; 12(2): 502-521, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34615656

RESUMO

Glioblastoma (GBM) is the most lethal primary brain cancer characterized by therapeutic resistance, which is promoted by GBM stem cells (GSC). Here, we interrogated gene expression and whole-genome CRISPR/Cas9 screening in a large panel of patient-derived GSCs, differentiated GBM cells (DGC), and neural stem cells (NSC) to identify master regulators of GSC stemness, revealing an essential transcription state with increased RNA polymerase II-mediated transcription. The YY1 and transcriptional CDK9 complex was essential for GSC survival and maintenance in vitro and in vivo. YY1 interacted with CDK9 to regulate transcription elongation in GSCs. Genetic or pharmacologic targeting of the YY1-CDK9 complex elicited RNA m6A modification-dependent interferon responses, reduced regulatory T-cell infiltration, and augmented efficacy of immune checkpoint therapy in GBM. Collectively, these results suggest that YY1-CDK9 transcription elongation complex defines a targetable cell state with active transcription, suppressed interferon responses, and immunotherapy resistance in GBM. SIGNIFICANCE: Effective strategies to rewire immunosuppressive microenvironment and enhance immunotherapy response are still lacking in GBM. YY1-driven transcriptional elongation machinery represents a druggable target to activate interferon response and enhance anti-PD-1 response through regulating the m6A modification program, linking epigenetic regulation to immunomodulatory function in GBM.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia , Animais , Neoplasias Encefálicas/genética , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
7.
Cell Stress ; 5(3): 37-39, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33681705

RESUMO

Repetitive elements (REs) are normally transcriptionally silenced in somatic cells by repressive epigenetic modifications, which are thought to include DNA methylation and histone modifications such as deacetylation, H3K9me3, and H4K20me3. Although, it is unclear how RE silencing is maintained through DNA replication cycles in rapidly growing cancer cells. On the other hand, the reactivation of endogenous retroelements beyond a threshold level of tolerance in cancer cells, such as by treatment with DNA demethylating agents or HDAC or LSD1 inhibitors, can induce viral mimicry responses that augment certain cancer therapies, including immunotherapy. However, these agents can also affect normal cells presenting obvious side effects. Therefore, uncovering cancer cell-specific RE silencing mechanisms could provide a basis for the development of a new generation of cancer immunotherapy drugs. In our study (Shen et al. (2020), Cell, doi: 10.1016/j.cell.2020.11.042), through a high-content RNAi screen we identified FBXO44 as a key regulator of H3K9me3-mediated transcriptional silencing of REs in cancer cells. Inhibition of FBXO44 or its co-factor SUV39H1 stimulated antiviral pathways and interferon (IFN) signaling and induced replication stress and DNA double-strand breaks (DSBs) in cancer cells, leading to restricted tumor growth and synergy with anti-PD-1 therapy (Figure 1). Figure 1FIGURE 1: Graphical representation of this study.FBXO44/SUV39H1 targeting activates REs that elicit DNA replication stress and viral mimicry in cancer cells, leading to tumor growth arrest and enhanced immunotherapy response.

8.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617969

RESUMO

Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Encéfalo/metabolismo , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA