Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nano Lett ; 20(7): 4960-4967, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32463682

RESUMO

The future of sustainable fertilizers and carbon-free energy carrier demands innovative breakthroughs in the exploitation of efficient electrocatalysts for synthesizing ammonia (NH3) from nitrogen (N2) in mild conditions. Understanding and regulating the reaction intermediates that form on the catalyst surface through careful catalyst design could bypass certain limitations associated with ambiguous adsorbate evolution mechanism. Herein, we propose ternary intermetallic Re2MnS6 ultrathin nanosheets that include orderly hybridized Mn-Re dual-metal sites through strong Hubbard e-e interaction, demonstrating a promising selectivity toward reaction process from N2 to NH3. The ordered inclusion of Mn sites leads to a structural phase transition and appearance of nonbonding semimetal states, in which the rate-limiting activation energy barrier is significantly decreased through a conversion in reaction pathway. As a result, the performance of N2 reduction in Re2MnS6 is increased about 6.6 times compared to the single-metal ReS2.

2.
J Am Chem Soc ; 142(29): 12841-12849, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32602708

RESUMO

Layered metal-organic structures (LMOSs) as magnetoelectric (ME) multiferroics have been of great importance for realizing new functional devices in nanoelectronics. Until now, however, achieving such room-temperature and single-phase ME multiferroics in LMOSs have proven challenging due to low transition temperature, poor spontaneous polarization, and weak ME coupling effect. Here, we demonstrate the construction of a LMOS in which four Ni-centered {NiN2O4} octahedra form in layer with asymmetric distortions using the coordination bonds between diphenylalanine molecules and transition metal Ni(II). Near room-temperature (283 K) ferroelectricity and ferromagnetism are observed to be both spontaneous and hysteretic. Particularly, the multiferroic LMOS exhibits strong magnetic-field-dependent ME polarization with low-magnetic-field control. The change in ME polarization with increasing applied magnetic field µ0H from 0 to 2 T decreases linearly from 0.041 to 0.011 µC/cm2 at the strongest ME coupling temperature of 251 K. The magnetic domains can be manipulated directly by applied electric field at 283 K. The asymmetrical distortion of Ni-centered octahedron in layer spurs electric polarization and ME effect and reduces spin frustration in the octahedral geometry due to spin-charge-orbital coupling. Our results represent an important step toward the production of room-temperature single-phase organic ME multiferroics.

3.
Nano Lett ; 12(3): 1545-8, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22385070

RESUMO

Good understanding of the reaction mechanism in the electrochemical reduction of water to hydrogen is crucial to renewable energy technologies. Although previous studies have revealed that the surface properties of materials affect the catalytic reactivity, the effects of a catalytic surface on the hydrogen evolution reaction (HER) on the molecular level are still not well understood. Contrary to general belief, water molecules do not adsorb onto the surfaces of 3C-SiC nanocrystals (NCs), but rather spontaneously dissociate via a surface autocatalytic process forming a complex consisting of -H and -OH fragments. In this study, we show that ultrathin 3C-SiC NCs possess superior electrocatalytic activity in the HER. This arises from the large reduction in the activation barrier on the NC surface enabling efficient dissociation of H(2)O molecules. Furthermore, the ultrathin 3C-SiC NCs show enhanced HER activity in photoelectrochemical cells and are very promising to the water splitting based on the synergistic electrocatalytic and photoelectrochemical actions. This study provides a molecular-level understanding of the HER mechanism and reveals that NCs with surface autocatalytic effects can be used to split water with high efficiency thereby enabling renewable and economical production of hydrogen.


Assuntos
Compostos Inorgânicos de Carbono/química , Carbono/química , Eletroquímica/métodos , Hidrogênio/química , Hidrogênio/isolamento & purificação , Nanoestruturas/química , Compostos de Silício/química , Água/química , Carbono/efeitos da radiação , Compostos Inorgânicos de Carbono/efeitos da radiação , Catálise , Campos Eletromagnéticos , Teste de Materiais , Nanoestruturas/efeitos da radiação , Compostos de Silício/efeitos da radiação
4.
Opt Express ; 20(5): 5119-26, 2012 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-22418317

RESUMO

Low-frequency Raman scattering from self-assembled bioinspired diphenylalanine (FF) nanotubes/microtubes (NTs/MTs) has been observed for the first time. Four double peaks are identified as the three-dimensional localized collective (acoustic phonon) vibrations of FF molecules in the subnanometer crystalline structure (biological building block) forming the FF NTs/MTs. The increased energy separations between two subpeaks caused by the loss of water in the nanochannel cores are due to the enhancement of vibrational couplings between the FF molecules as a result of the reduction of the influence from water on the coupling. The results provide experimental evidence of localized but still weakly coupled vibrations in organic crystalline nanostructures in the low-frequency region.


Assuntos
Materiais Biomiméticos/química , Microtúbulos/química , Nanotubos/química , Fenilalanina/análogos & derivados , Análise Espectral Raman/métodos , Dipeptídeos , Luz , Teste de Materiais , Nanotubos/ultraestrutura , Fenilalanina/química , Espalhamento de Radiação
5.
iScience ; 24(11): 103384, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34825143

RESUMO

Allergic diseases are closely related to degranulation and release of histamine and difficult to diagnose because non-allergic diseases also exhibit the same clinical symptoms as allergy. Here, we report direct, rapid, and ultrasensitive detection of histamine using low-frequency molecular torsion Raman spectroscopy. We show that the low-frequency (<200 cm-1) Raman spectral intensities are stronger by one order of magnitude than those of the high-frequency Raman ones. Density functional theory calculation and nuclear magnetic resonance spectroscopy identify the strong spectral feature to be from torsions of carbon-carbon single bonds, which produce large variations of the polarizability densities in the imidazole ring and ethyl amino side chain. Using an omniphobic substrate and surface plasmonic effect of Au@SiO2 nanoparticles, the detection limit (signal-noise ratio >3) of histamine reaches 10-8 g/L in water and 10-6 g/L in serum. This scheme thus opens new lines of inquiry regarding the clinical diagnosis of allergic diseases.

6.
ACS Nano ; 13(2): 2334-2340, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30735355

RESUMO

Two dimensional (2D) materials possessing ferroelectric/ferromagnetic orders and especially low-magnetic-field controlled magnetoelectricity have great promise in spintronics and multistate data storage. However, ferroelectric and magnetoelectric (ME) dipoles in the atom-thick 2D materials are difficult to be realized due to structural inversion symmetry, thermal actuation, and depolarized field. To overcome these difficulties, the monolayer structure must possess an in-plane inversion asymmetry in order to provide out-of-plane ferroelectric polarization. Herein, crystal chemistry is adopted to engineer specific atomic displacement in monolayer ReS2 to change the crystal symmetry to induce out-of-plane ferroelectric polarization at room temperature. The cationic Re vacancy in the atom-displaced ReS2 monolayer causes spin polarization of two immediate neighbor sulfur atoms to generate magnetic ordering, and the ferroelectric distortion near the Re vacancy locally tunes the ferromagnetic order thereby triggering low-magnetic-field controlled ME polarization at about 28 K. As a result, 2D ME coupling multiferroics is achieved. Our results not only reveal a design methodology to attain coexistence of ferroelectric and ferromagnetic orders in 2D materials but also provide insights into magnetoelectricity in 2D materials.

7.
Nat Commun ; 10(1): 399, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674896

RESUMO

The exploitation of the stable and earth-abundant electrocatalyst with high catalytic activity remains a significant challenge for hydrogen evolution reaction. Being different from complex nanostructuring, this work focuses on a simple and feasible way to improve hydrogen evolution reaction performance via manipulation of intrinsic physical properties of the material. Herein, we present an interesting semiconductor-metal transition in ultrathin troilite FeS nanosheets triggered by near infrared radiation at near room temperature for the first time. The photogenerated metal-phase FeS nanosheets demonstrate intrinsically high catalytic activity and fast carrier transfer for hydrogen evolution reaction, leading to an overpotential of 142 mV at 10 mA cm-2 and a lower Tafel slope of 36.9 mV per decade. Our findings provide new inspirations for the steering of electron transfer and designing new-type catalysts.

9.
Nanoscale ; 10(47): 22448-22455, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30478465

RESUMO

Rolling up 2D atomic layered materials into 1D nanotubes gives rise to fascinating properties due to their lower dimension, higher anisotropy, and strain effects. In this work, the curving of 2D graphitic C3N4 (g-C3N4) sheets into 1D nanotubes is demonstrated for the first time through simple and clean ultrasonic treatments. The steady-state optical transitions are slightly enhanced while the localized trapping of excited carriers is considerably suppressed after rolling up the planar sheets into nanotubes. The mechanical method to modulate the dimension scarcely changes the chemical structures, enabling the pure investigation on shape-induced physical effects. As a proof of principle, this work confirms the dynamics of excited carriers, and the photoelectronic properties of 2D semiconductors can be significantly engineered by a simple morphological evolution.

10.
Nat Commun ; 9(1): 3366, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135422

RESUMO

Photocatalytic hydrogen evolution from water has triggered an intensive search for metal-free semiconducting photocatalysts. However, traditional semiconducting materials suffer from limited hydrogen evolution efficiency owing to low intrinsic electron transfer, rapid recombination of photogenerated carriers, and lack of artificial microstructure. Herein, we report a metal-free half-metallic carbon nitride for highly efficient photocatalytic hydrogen evolution. The introduced half-metallic features not only effectively facilitate carrier transfer but also provide more active sites for hydrogen evolution reaction. The nanosheets incorporated into a micro grid mode resonance structure via in situ pyrolysis of ionic liquid, which show further enhanced photoelectronic coupling and entire solar energy exploitation, boosts the hydrogen evolution rate reach up to 1009 µmol g-1 h-1. Our findings propose a strategy for micro-structural regulations of half-metallic carbon nitride material, and meanwhile the fundamentals provide inspirations for the steering of electron transfer and solar energy absorption in electrocatalysis, photoelectrocatalysis, and photovoltaic cells.

11.
J Phys Chem Lett ; 8(12): 2719-2724, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28581754

RESUMO

The anisotropic exciton behavior in two-dimensional materials induced by spin-orbit coupling or anisotropic spatial confinement has been exploited in imaging applications. Herein, we propose a new strategy to generate high-energy and robust anisotropic excitons in few-layer ReS2 nanosheets by phase engineering. This approach overcomes the limitation imposed by the layer thickness, enabling production of visible polarized photoluminescence at room temperature. Ultrasonic chemical exfoliation is implemented to introduce the metallic T phase of ReS2 into the few-layer semiconducting Td nanosheets. In this configuration, light excitation can readily produce "hot" electrons to tunnel to the Td phase via the metal-semiconductor interface to enhance the overlap between the wave functions and screened Coulomb interactions. Owing to the strong electron-hole interaction, significant increase in the optical band gap is observed. Highly anisotropic and tightly bound excitons with visible light emission (1.5-2.25 eV) are produced and can be controlled by tailoring the T phase concentration. This novel strategy allows manipulation of polarized optical information and has great potential in optoelectronic devices.

12.
ACS Appl Mater Interfaces ; 8(24): 15848-54, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27258793

RESUMO

Graphene oxide (GO) is a good adsorbent for heavy-metal ions because the oxygen functional groups offer active adsorption sites, but a small-size GO with dense oxygen-containing groups has high water solubility causing difficulty in separation. Herein, GO is bound to large brianyoungite (BY) by Zn-O coordination via a hydrothermal reaction that produces BY-GO composites with hollow spherical and flakelike morphologies that are easy to remove. By producing abundant oxygen-containing groups on GO, the Cu(2+) adsorption capacity increases to 1724.1 mg/g, which is the highest value in graphene-related materials. The experimental and theoretical analysis clearly shows that the infrared spectral shifts toward the low-frequency side of C-O-H and O═C-O bending vibrations in the BY-GO composites stem from the Zn(2+) (or Cu(2+)) coordination with O atoms in GO. The BY-GO also exhibits tunable deep-red photoluminescence up to 750 nm with a quantum yield of about 1%, which may be useful in infrared optoelectronic devices and solar energy exploitation. The photoluminescence which is different from that previously reported from chemically derived GO can be attributed to the optical transition in the disorder-induced localized states of the carbon-oxygen functional groups.

13.
Biomaterials ; 34(36): 9183-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24008041

RESUMO

Intracellular pH (pHi) plays a critical role in the physiological processes of cells. Nanoscale sensors based on pH-sensitive fluorescent proteins attached on nanoparticles (NPs) have been designed but inorganic NP-dependent fluorescent nanosensors have not yet been explored. Herein we describe a pH sensitive inorganic semiconductor fluorescent probe based on ultrathin 3C-SiC NPs which can effectively monitor pH in the range of 5.6-7.4 by taking advantage of the linear dependence between the fluorescent intensity ratio of the surface OH(-) and H(+) bonding states to band-to-band recombination and pH. Detection of pHi is demonstrated in living HeLa cells. In particular, pHi measurements during apoptosis confirm the validity and sensitivity of this technique in monitoring real-time changes in the intracellular environment. Toxicity assessment and confocal laser scanning microscopy indicate that the 3C-SiC NPs have low cytotoxicity and are compatible with living cells.


Assuntos
Compostos Inorgânicos de Carbono/metabolismo , Espaço Intracelular/metabolismo , Nanopartículas/química , Compostos de Silício/metabolismo , Apoptose , Calibragem , Endocitose , Fluoresceínas/metabolismo , Fluorescência , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectrometria de Fluorescência
14.
ACS Appl Mater Interfaces ; 4(4): 2041-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22462554

RESUMO

Graphene was synthesized by chemical vapor deposition using polystyrene as the solid carbon source. The number of graphene layers could be controlled by regulating the weight of polystyrene under atmospheric pressure at 1000 °C. Silver nanoparticles were then deposited on the graphene by a citrate reduction method. The interaction between graphene and silver was investigated by suface-enhanced Raman scattering spectra and X-ray photoelectron spectroscopy. The change in the G band position indicates n-type doping of the graphene due to an interaction between the silver and the graphene. Silver interlayer doped four-layer graphene shows a sheet resistance of 63 Ω/sq and a light transmittance of 85.4% at 550 nm. The optical and electrical quality of graphene exceeds the minimum industry standard for indium tin oxide replacement materials. It is clearly understood that the environmental sheet resistance stability of the interlayer doped graphene film is better than that of surface doped graphene sheets. The presence of graphene at the surface also acts as a protective layer for the inner silver ions and clusters.

15.
Langmuir ; 25(19): 11890-6, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19788231

RESUMO

Dendritic Ag/Au bimetallic nanostructures have been synthesized via a galvanic replacement reaction (GRR) of Ag dendrites in a chlorauric acid (HAuCl4) solution. After short periods of time, one obtains structures with protruding flakes; these will mature into very porous structures with little Ag left over. The morphological, compositional, and crystal structural changes involved with reaction time t were analyzed by using scanning and transmission electron microscopy (SEM and TEM, respectively), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction. High-resolution TEM combined with EDX and selected area electron diffraction confirmed the replacement of Ag with Au. A proposed formation mechanism of the original Ag dendrites developing pores while growing Au flakes cover this underlying structure at longer reaction times is confirmed by exploiting surface-enhanced Raman scattering (SERS). Catalytic reduction of 4-nitrophenol (4-NP) by sodium borohydride (NaBH4) is strongly enhanced, implying promising applications in catalysis.


Assuntos
Dendritos/química , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Boroidretos/química , Catálise , Microscopia Eletrônica de Transmissão , Nitrofenóis/química , Oxirredução , Espectrofotometria Ultravioleta , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA