Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(21): 3023-3032, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874852

RESUMO

ConspectusThe value of operando and in situ characterization methodologies for understanding electrochemical systems under operation can be inferred from the upsurge of studies that have reported mechanistic insights into electrocatalytic processes based on such measurements. Despite the widespread availability of performing dynamic experiments nowadays, these techniques are in their infancy because the complexity of the experimental design and the collection and analysis of data remain challenging, effectively necessitating future developments. It is also due to their extensive use that a dedicated modus operandi for acquiring dynamic electrocatalytic information is imperative. In this Account, we focus on the work of our laboratory on electrochemical liquid-phase transmission electron microscopy (ec-LPTEM) to understand the transformation/activation of state-of-the-art nanocatalysts for the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and CO2 electroreduction (CO2ER). We begin by describing the development of electrochemical microcells for TEM studies, highlighting the importance of tailoring the system to each electrochemical process to obtain reliable results. Starting with the anodic OER for alkaline electrolyzers, we demonstrate the capability of real-time monitoring of the electrowetting behavior of Co-based oxide catalysts and detail the fascinating insights gained into solid-liquid interfaces for the reversible surface reconstruction of the catalystic surfaces and their degradation processes. Importantly, in the case of the OER, we report the exceptional capacity of ec-LPTEM to probe gaseous products and therefore resolve solid-liquid-gas phenomena. Moving toward the cathodic ORR for fuel cells, we summarize studies that pertain to the evaluation of the degradation mechanisms of Pt nanoparticles and discuss the issues with performing real-time measurements on realistic catalyst layers that are composed of the carbon support, ionomer network, and Pt nanocatalysts. For the most cathodic CO2ER, we first discuss the challenges of spatiotemporal data collection in microcells under these negative potentials. We then show that control over the electrochemical stimuli is critical for determining the mechanism of restructuring/dissolution of Cu nanospheres, either for focusing on the first stages of the reaction or for start/stop operation studies. Finally, we close this Account with the possible evolution in the way we visualize electrochemical processes with ec-LPTEM and emphasize the need for studies that bridge the scales with the ultimate goal of fully evaluating the impact of the insights obtained from the in situ-monitored processes on the operability of electrocatalytic devices.

2.
J Am Chem Soc ; 145(43): 23691-23701, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862452

RESUMO

Ni- and Co-based catalysts with added Fe demonstrate promising activity in the oxygen evolution reaction (OER) during alkaline water electrolysis, with the presence of Fe in a certain quantity being crucial for their enhanced performance. The mode of incorporation, local placement, and structure of Fe ions in the host catalyst, as well as their direct/indirect contribution to enhancing the OER activity, remain under active investigation. Herein, the mechanism of Fe incorporation into a Co-based host was investigated using an in situ synthesized Co-Fe catalyst in an alkaline electrolyte containing Co2+ and Fe3+. Fe was found to be uniformly incorporated, which occurs solely after the anodic deposition of the Co host structure and results in exceptional OER activity with an overpotential of 319 mV at 10 mA cm-2 and a Tafel slope of 28.3 mV dec-1. Studies on the lattice structure, chemical oxidation states, and mass changes indicated that Fe is incorporated into the Co host structure by replacing the Co3+ sites with Fe3+ from the electrolyte. Operando Raman measurements revealed that the presence of doped Fe in the Co host structure reduces the transition potential of the in situ Co-Fe catalyst to the OER-active phase CoO2. The findings of our facile synthesis of highly active and stable Co-Fe particle catalysts provide a comprehensive understanding of the role of Fe in Co-based electrocatalysts, covering aspects that include the incorporation mode, local structure, placement, and mechanistic role in enhancing the OER activity.

3.
Angew Chem Int Ed Engl ; 60(3): 1347-1354, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32997884

RESUMO

Size, morphology, and surface sites of electrocatalysts have a major impact on their performance. Understanding how, when, and why these parameters change under operating conditions is of importance for designing stable, active, and selective catalysts. Herein, we study the reconstruction of a Cu-based nanocatalysts during the startup phase of the electrochemical CO2 reduction reaction by combining results from electrochemical in situ transmission electron microscopy with operando X-ray absorption spectroscopy. We reveal that dissolution followed by redeposition, rather than coalescence, is the mechanism responsible for the size increase and morphology change of the electrocatalyst. Furthermore, we point out the key role played by the formation of copper oxides in the process. Understanding of the underlying processes opens a pathway to rational design of Cu electro (re)deposited catalysts and to stability improvement for catalysts fabricated by other methods.

4.
J Am Chem Soc ; 142(37): 15876-15883, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32809812

RESUMO

Among the perovskites used to catalyze the oxygen evolution reaction (OER), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) exhibits excellent activity which is thought to be related to dynamic reconstruction at the flexible perovskite surface due to accommodation of large amount of oxygen vacancies. By studying the local structure and chemistry of BSCF surfaces, in detail, via a range of transmission electron microscopy (TEM) methods, we show that the surfaces of the as-synthesized BSCF particles are Co/Fe rich, and remarkably, adopt a spinel-like structure with a reduced valence of Co ions. Post-mortem and identical location TEM analyses reveal that the Co/Fe spinel-like surface retains a stable chemical environment of the Co/Fe ions, although its structure weakens after electrochemical processing. Further, it is verified that prior to the onset of OER, the Co/Fe spinel-like surface promotes the formation of the highly active Co(Fe)OOH phase, which enhances the OER electrocatalytic properties of the underlying conductive BSCF perovskite. This study provides a detailed understanding of the fundamental transformations that oxide catalysts undergo during electrochemical processes and can aid in the development of novel oxide catalysts with enhanced activity.

5.
Small ; 14(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134759

RESUMO

One of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO2 (Ni/TiO2[Vo] ) with built-in dual active sites for selective photocatalytic CO2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored.

6.
Nano Lett ; 17(12): 7494-7499, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29185770

RESUMO

Compositional abruptness of the interfaces is one of the important factors to determine the performance of Group IV semiconductor heterojunction (Si/Ge or Si/SiGe) nanowire devices. However, forming abrupt interfaces in the nanowires using the common vapor-liquid-solid (VLS) method is restricted because large solubility of Si and Ge in the Au eutectic liquid catalyst makes gradual composition change at the heterojunction after switching the gas phase components. According to the VLS growth mechanism, another possible approach to form an abrupt interface is making a change of the semiconductor concentration in the eutectic liquid before precipitation of the second phase. Here we show that the composition in AuSiGe eutectic liquid on SiGe nanowires of low Ge concentration (≤6%) can be altered by thermal oxidation at 700 °C. During the oxidation process, only Si is oxidized on the surface of the eutectic liquid, and the Ge/Si ratio in the eutectic liquid is increased. The subsequently precipitated SiGe step at the liquid/solid interface has a higher Ge concentration (∼20%), and a compositionally abrupt interface is produced in the nanowires. The growth mechanism of the heterojunction includes diffusion of Si and Ge atoms on nanowire surface into the AuSiGe eutectic liquid and step nucleation at the liquid/nanowire interface.

7.
Adv Mater ; 36(16): e2311133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217533

RESUMO

The ability to resolve the dynamic evolution of electrocatalytically induced processes with electrochemical liquid-phase electron microscopy (EM) is limited by the microcell configuration. Herein, a free-standing tri-layer graphene is integrated as a membrane and electrode material into the electrochemical chip and its suitability as a substrate electrode at the high cathodic potentials required for CO2 electroreduction (CO2ER) is evaluated. The three-layer stacked graphene is transferred onto an in-house fabricated single-working electrode chip for use with bulk-like reference and counter electrodes to facilitate evaluation of its effectiveness. Electrochemical measurements show that the graphene working electrode exhibits a wider inert cathodic potential range than the conventional glassy carbon electrode while achieving good charge transfer properties for nanocatalytic redox reactions. Operando scanning electron microscopy studies clearly demonstrate the improvement in spatial resolution but reveal a synergistic effect of the electron beam and the applied potential that limits the stability time window of the graphene-based electrochemical chip. By optimizing the operating conditions, in situ monitoring of Cu nanocube degradation is achieved at the CO2ER potential of -1.1 V versus RHE. Thus, this improved microcell configuration allows EM observation of catalytic processes at potentials relevant to real systems.

8.
Nat Catal ; 5(1): 30-36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141468

RESUMO

The surface wettability of catalysts is typically controlled via surface treatments that promote catalytic performance. Here we report on potential-regulated hydrophobicity/hydrophilicity at cobalt-based oxide interfaces with an alkaline solution. The switchable wetting of single particles, directly related to their activity and stability towards the oxygen evolution reaction, was revealed by electrochemical liquid-phase transmission electron microscopy. Analysis of the movement of the liquid in real time revealed distinctive wettability behaviour associated with specific potential ranges. At low potentials, an overall reduction of the hydrophobicity of the oxides was probed. Upon reversible reconstruction towards the surface oxyhydroxide phase, electrowetting was found to cause a change in the interfacial capacitance. At high potentials, the evolution of molecular oxygen, confirmed by operando electron energy-loss spectroscopy, was accompanied by a globally thinner liquid layer. This work directly links the physical wetting with the chemical oxygen evolution reaction of single particles, providing fundamental insights into solid-liquid interfacial interactions of oxygen-evolving oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA