Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 167(3): 600-601, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768882

RESUMO

Using a reconstituted system containing genomic DNA and purified proteins from yeast, Krietenstein et al. uncover the direct contributions of key factors in nucleosome positioning and conceptualize the process into four distinct stages.


Assuntos
Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina , Genoma , Proteínas de Saccharomyces cerevisiae/genética
2.
PLoS Pathog ; 17(6): e1009657, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34133468

RESUMO

GTP-binding protein (G-protein) and regulator of G-protein signaling (RGS) mediated signal transduction are critical in the growth and virulence of the rice blast pathogen Magnaporthe oryzae. We have previously reported that there are eight RGS and RGS-like proteins named MoRgs1 to MoRgs8 playing distinct and shared regulatory functions in M. oryzae and that MoRgs1 has a more prominent role compared to others in the fungus. To further explore the unique regulatory mechanism of MoRgs1, we screened a M. oryzae cDNA library for genes encoding MoRgs1-interacting proteins and identified MoCkb2, one of the two regulatory subunits of the casein kinase (CK) 2 MoCk2. We found that MoCkb2 and the sole catalytic subunit MoCka1 are required for the phosphorylation of MoRgs1 at the plasma membrane (PM) and late endosome (LE). We further found that an endoplasmic reticulum (ER) membrane protein complex (EMC) subunit, MoEmc2, modulates the phosphorylation of MoRgs1 by MoCk2. Interestingly, this phosphorylation is also essential for the GTPase-activating protein (GAP) function of MoRgs1. The balance among MoRgs1, MoCk2, and MoEmc2 ensures normal operation of the G-protein MoMagA-cAMP signaling required for appressorium formation and pathogenicity of the fungus. This has been the first report that an EMC subunit is directly linked to G-protein signaling through modulation of an RGS-casein kinase interaction.


Assuntos
Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Virulência/fisiologia , Caseína Quinases/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
3.
Mol Cell ; 58(5): 863-9, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25959398

RESUMO

ATP-dependent chromatin remodeling complexes such as INO80 have been implicated in checkpoint regulation in response to DNA damage. However, how chromatin remodeling complexes regulate DNA damage checkpoints remain unclear. Here, we identified a mechanism of regulating checkpoint effector kinase Rad53 through a direct interaction with the INO80 chromatin remodeling complex. Rad53 is a key checkpoint kinase downstream of Mec1. Mec1/Tel1 phosphorylates the Ies4 subunit of the INO80 complex in response to DNA damage. We find that the phosphorylated Ies4 binds to the N-terminal FHA domain of Rad53. In vitro, INO80 can activate Rad53 kinase activity in an Ies4-phosphorylation-dependent manner in the absence of known activators such as Rad9. In vivo, Ies4 and Rad9 function synergistically to activate Rad53. These findings establish a direct connection between ATP-dependent chromatin remodeling complexes and checkpoint regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Ativação Enzimática , Dados de Sequência Molecular , Fosforilação , Proteólise
4.
Genes Dev ; 29(6): 591-602, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25792597

RESUMO

ATP-dependent chromatin remodeling complexes alter chromatin structure through interactions with chromatin substrates such as DNA, histones, and nucleosomes. However, whether chromatin remodeling complexes have the ability to regulate nonchromatin substrates remains unclear. Saccharomyces cerevisiae checkpoint kinase Mec1 (ATR in mammals) is an essential master regulator of genomic integrity. Here we found that the SWI/SNF chromatin remodeling complex is capable of regulating Mec1 kinase activity. In vivo, Mec1 activity is reduced by the deletion of Snf2, the core ATPase subunit of the SWI/SNF complex. SWI/SNF interacts with Mec1, and cross-linking studies revealed that the Snf2 ATPase is the main interaction partner for Mec1. In vitro, SWI/SNF can activate Mec1 kinase activity in the absence of chromatin or known activators such as Dpb11. The subunit requirement of SWI/SNF-mediated Mec1 regulation differs from that of SWI/SNF-mediated chromatin remodeling. Functionally, SWI/SNF-mediated Mec1 regulation specifically occurs in S phase of the cell cycle. Together, these findings identify a novel regulator of Mec1 kinase activity and suggest that ATP-dependent chromatin remodeling complexes can regulate nonchromatin substrates such as a checkpoint kinase.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Dano ao DNA/fisiologia , Ativação Enzimática , Ativadores de Enzimas/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
5.
Nat Rev Mol Cell Biol ; 10(6): 373-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19424290

RESUMO

Chromatin-modifying factors have essential roles in DNA processing pathways that dictate cellular functions. The ability of chromatin modifiers, including the INO80 and SWR1 chromatin-remodelling complexes, to regulate transcriptional processes is well established. However, recent studies reveal that the INO80 and SWR1 complexes have crucial functions in many other essential processes, including DNA repair, checkpoint regulation, DNA replication, telomere maintenance and chromosome segregation. During these diverse nuclear processes, the INO80 and SWR1 complexes function cooperatively with their histone substrates, gamma-H2AX and H2AZ. This research reveals that INO80 and SWR1 ATP-dependent chromatin remodelling is an integral component of pathways that maintain genomic integrity.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Cromatina/metabolismo , Cromossomos Fúngicos/metabolismo , Cromossomos Fúngicos/ultraestrutura , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Histonas/classificação , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transcrição Gênica
7.
Am J Hum Genet ; 100(1): 21-30, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939641

RESUMO

Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-ß-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.


Assuntos
Displasia Fibromuscular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Osso e Ossos/patologia , Braquidactilia/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular , Exoma/genética , Feminino , Genes Recessivos , Heterozigoto , Homozigoto , Humanos , Deficiências da Aprendizagem/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Sindactilia/genética , Síndrome
8.
Mol Cell ; 37(5): 595-6, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20227364

RESUMO

Nucleosomes are disassembled during DNA replication. How histone modifications and histone chaperones collaborate to reassemble nucleosomes on replicated DNA is explored by Jasencakova et al. (2010) and Burgess et al. (2010) in this and a recent issue of Molecular Cell, respectively.


Assuntos
Montagem e Desmontagem da Cromatina , Replicação do DNA , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Acetilação , Animais , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/biossíntese , DNA de Cadeia Simples/biossíntese , Histona Acetiltransferases/metabolismo , Humanos , Metilação , Chaperonas Moleculares/genética , Nucleossomos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Fatores de Tempo
9.
Curr Opin Cell Biol ; 19(3): 326-30, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17467255

RESUMO

Conventional actin and actin-related proteins (Arps) are members of the actin superfamily and are conserved throughout evolution. Although the cytoskeletal functions of cytoplasmic actin and Arps have been characterized extensively, the functions and mechanisms of nuclear actin and Arps are not yet well understood. Emerging evidence suggest that nuclear actin and Arps are involved in many nuclear processes, such as transcription and chromatin remodeling. Actin and Arps are subunits of multiple chromatin modifying complexes, and functionally contribute to chromatin modifications. Recent progress has been made in understanding nuclear actin and Arps in the context of chromatin regulation, suggesting potential mechanisms for their functions.


Assuntos
Actinas/química , Núcleo Celular/química , Cromatina/metabolismo , Proteínas dos Microfilamentos/química , Actinas/genética , Actinas/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo
10.
Proc Natl Acad Sci U S A ; 107(40): 17274-9, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20855601

RESUMO

The creation of accessible DNA in the context of chromatin is a key step in many DNA functions. To reveal how ATP-dependent chromatin remodeling activities impact DNA repair, we constructed mammalian genetic models for the INO80 chromatin remodeling complex and investigated the impact of loss of INO80 function on the repair of UV-induced photo lesions. We showed that deletion of two core components of the INO80 complex, INO80 and ARP5, significantly hampered cellular removal of UV-induced photo lesions but had no significant impact on the transcription of nucleotide excision repair (NER) factors. Loss of INO80 abolished the assembly of NER factors, suggesting that prior chromatin relaxation is important for the NER incision process. Ino80 and Arp5 are enriched to UV-damaged DNA in an NER-incision-independent fashion, suggesting that recruitment of the remodeling activity likely takes place during the initial stage of damage recognition. These results demonstrate a critical role of INO80 in creating DNA accessibility for the NER pathway and provide direct evidence that repair of UV lesions and perhaps most bulky adduct lesions requires chromatin reconfiguration.


Assuntos
Montagem e Desmontagem da Cromatina , Dano ao DNA , Reparo do DNA , DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/genética , DNA/metabolismo , DNA/efeitos da radiação , Técnicas de Silenciamento de Genes , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Raios Ultravioleta
11.
Artigo em Inglês | MEDLINE | ID: mdl-36674147

RESUMO

Covalent organic framework (COF)-TpBD was grafted on the arrayed nanopores of stainless steel fiber (SSF) with (3-aminopropyl) triethoxysilane as the cross-linking agent. The prepared SSF bonded with COF-TpBD showed high thermal and chemical stability and excellent repeatability. The prepared SSF bonded with COF-TpBD was also used for the solid-phase microextraction (SPME) of seven kinds of polycyclic aromatic hydrocarbons (PAHs) in actual water samples, followed by gas chromatography with flame ionization detection (GC-FID) determination, which exhibited low limits of detection (LODs), good relative standard deviation (RSD) and high recoveries.


Assuntos
Estruturas Metalorgânicas , Nanoporos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Água/química , Estruturas Metalorgânicas/química , Aço Inoxidável , Hidrocarbonetos Policíclicos Aromáticos/análise , Microextração em Fase Sólida/métodos , Limite de Detecção , Poluentes Químicos da Água/análise
12.
Front Pharmacol ; 14: 1250893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841927

RESUMO

The Wnt/ß-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/ß-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/ß-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/ß-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.

13.
Res Sq ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909460

RESUMO

Missense variants throughout ACTA2, encoding smooth muscle α-actin (αSMA), predispose to adult onset thoracic aortic disease, but variants disrupting arginine 179 (R179) lead to Smooth Muscle Dysfunction Syndrome (SMDS) characterized by childhood-onset diverse vascular diseases. Our data indicate that αSMA localizes to the nucleus in wildtype (WT) smooth muscle cells (SMCs), enriches in the nucleus with SMC differentiation, and associates with chromatin remodeling complexes and SMC contractile gene promotors, and the ACTA2 p.R179 variant decreases nuclear localization of αSMA. SMCs explanted from a SMC-specific conditional knockin mouse model, Acta2SMC-R179/+, are less differentiated than WT SMCs, both in vitro and in vivo, and have global changes in chromatin accessibility. Induced pluripotent stem cells from patients with ACTA2 p.R179 variants fail to fully differentiate from neural crest cells to SMCs, and single cell transcriptomic analyses of an ACTA2 p.R179H patient's aortic tissue shows increased SMC plasticity. Thus, nuclear αSMA participates in SMC differentiation and loss of this nuclear activity occurs with ACTA2 p.R179 pathogenic variants.

14.
Nat Cardiovasc Res ; 2(10): 937-955, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38919852

RESUMO

Missense variants throughout ACTA2, encoding smooth muscle α-actin (αSMA), predispose to adult-onset thoracic aortic disease, but variants disrupting arginine 179 (R179) lead to Smooth Muscle Dysfunction Syndrome (SMDS) characterized by diverse childhood-onset vascular diseases. Here we show that αSMA localizes to the nucleus in wildtype (WT) smooth muscle cells (SMCs), enriches in the nucleus with SMC differentiation, and associates with chromatin remodeling complexes and SMC contractile gene promotors. The ACTA2 p.R179 αSMA variant shows decreased nuclear localization. Primary SMCs from Acta2 SMC-R179C/+ mice are less differentiated than WT SMCs in vitro and in vivo and have global changes in chromatin accessibility. Induced pluripotent stem cells from patients with ACTA2 p.R179 variants fail to fully differentiate from neuroectodermal progenitor cells to SMCs, and single-cell transcriptomic analyses of an ACTA2 p.R179H patient's aortic tissue show increased SMC plasticity. Thus, nuclear αSMA participates in SMC differentiation, and loss of this nuclear activity occurs with ACTA2 p.R179 pathogenic variants.

15.
Nature ; 439(7075): 497-501, 2006 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-16299494

RESUMO

One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating gammaH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of gammaH2AX in vivo and efficiently dephosphorylates gammaH2AX in vitro. gammaH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets gammaH2AX after its displacement from DNA. The dephosphorylation of gammaH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.


Assuntos
Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA/efeitos da radiação , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/genética , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
16.
Curr Opin Genet Dev ; 17(2): 126-31, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17320375

RESUMO

ATP-dependent chromatin remodeling complexes use ATP hydrolysis to remodel nucleosomes and have well-established functions in transcription. However, emerging lines of evidence suggest that chromatin remodeling complexes are important players in DNA double-strand break (DSB) repair as well. The INO80 and SWI2 subfamilies of chromatin remodeling complexes have been found to be recruited to the double-strand lesions and to function directly in both homologous recombination and non-homologous end-joining, the two major conserved DSB repair pathways. Improperly repaired DSBs are implicated in cancer development in higher organisms. Understanding how chromatin remodeling complexes contribute to DSB repair should provide new insights into the mechanisms of carcinogenesis and might suggest new targets for cancer treatment.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Modelos Genéticos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Mol Cell Biol ; 27(16): 5639-49, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17562861

RESUMO

ATP-dependent chromatin remodeling complexes have been implicated in the regulation of transcription, replication, and more recently DNA double-strand break repair. Here we report that the Ies3p subunit of the Saccharomyces cerevisiae INO80 chromatin remodeling complex interacts with a conserved tetratricopeptide repeat domain of the telomerase protein Est1p. Deletion of IES3 and some other subunits of the complex induced telomere elongation and altered telomere position effect. In telomerase-negative mutants, loss of Ies3p delayed the emergence of recombinational survivors and stimulated the formation of extrachromosomal telomeric circles in survivors. Deletion of IES3 also resulted in heightened levels of telomere-telomere fusions in telomerase-deficient strains. In addition, a delay in survivor formation was observed in an Arp8p-deficient mutant. Because Arp8p is required for the chromatin remodeling activity of the INO80 complex, the complex may promote recombinational telomere maintenance by altering chromatin structure. Consistent with this notion, we observed preferential localization of multiple subunits of the INO80 complex to telomeres. Our results reveal novel functions for a subunit of the telomerase complex and the INO80 chromatin remodeling complex.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Telomerase/química , Telomerase/metabolismo
18.
J Clin Invest ; 130(11): 5951-5966, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33016929

RESUMO

ARID1A, a component of the chromatin-remodeling complex SWI/SNF, is one of the most frequently mutated genes in human cancer. We sought to develop rational combination therapy to potentiate the efficacy of immune checkpoint blockade in ARID1A-deficient tumors. In a proteomic analysis of a data set from The Cancer Genomic Atlas, we found enhanced expression of Chk2, a DNA damage checkpoint kinase, in ARID1A-mutated/deficient tumors. Surprisingly, we found that ARID1A targets the nonchromatin substrate Chk2 for ubiquitination. Loss of ARID1A increased the Chk2 level through modulating autoubiquitination of the E3-ligase RNF8 and thereby reducing RNF8-mediated Chk2 degradation. Inhibition of the ATM/Chk2 DNA damage checkpoint axis led to replication stress and accumulation of cytosolic DNA, which subsequently activated the DNA sensor STING-mediated innate immune response in ARID1A-deficient tumors. As expected, tumors with mutation or low expression of both ARID1A and ATM/Chk2 exhibited increased tumor-infiltrating lymphocytes and were associated with longer patient survival. Notably, an ATM inhibitor selectively potentiated the efficacy of immune checkpoint blockade in ARID1A-depleted tumors but not in WT tumors. Together, these results suggest that ARID1A's targeting of the nonchromatin substrate Chk2 for ubiquitination makes it possible to selectively modulate cancer cell-intrinsic innate immunity to enhance the antitumor activity of immune checkpoint blockade.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias , Neoplasias , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Fatores de Transcrição/deficiência , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase do Ponto de Checagem 2/genética , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Nucleotidiltransferases/genética , Proteólise , Fatores de Transcrição/metabolismo
19.
Cell Rep ; 32(13): 108172, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32997990

RESUMO

Nuclear actin has been elusive due to the lack of knowledge about molecular mechanisms. From actin-containing chromatin remodeling complexes, we discovered an arginine mono-methylation mark on an evolutionarily conserved R256 residue of actin (R256me1). Actin R256 mutations in yeast affect nuclear functions and cause diseases in human. Interestingly, we show that an antibody specific for actin R256me1 preferentially stains nuclear actin over cytoplasmic actin in yeast, mouse, and human cells. We also show that actin R256me1 is regulated by protein arginine methyl transferase-5 (PRMT5) in HEK293 cells. A genome-wide survey of actin R256me1 mark provides a landscape for nuclear actin correlated with transcription. Further, gene expression and protein interaction studies uncover extensive correlations between actin R256me1 and active transcription. The discovery of actin R256me1 mark suggests a fundamental mechanism to distinguish nuclear actin from cytoplasmic actin through post-translational modification (PTM) and potentially implicates an actin PTM mark in transcription and human diseases.


Assuntos
Actinas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Fatores de Transcrição/metabolismo , Animais , Humanos , Metilação , Camundongos
20.
Trends Genet ; 22(12): 671-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16997415

RESUMO

Although chromatin remodeling has a key role in the regulation of gene expression, it is also important for other chromatin-based processes such as DNA repair, replication and recombination. ATP-dependent chromatin remodeling factors have unique roles in disrupting histone-DNA interactions and are targeted to gene promoters to 'loosen' chromatin for access of transcription factors. Recently, three chromatin remodeling factors with roles in transcriptional regulation have also been shown to be present at sites of DNA double-strand breaks (DSBs) in yeast. These factors control different aspects of DSB repair, suggesting that chromatin remodeling constitutes a key mechanism to preserve genome integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Nucleossomos/ultraestrutura , Trifosfato de Adenosina/química , Cromatina/química , Cromatina/metabolismo , Proteínas Fúngicas/química , Regulação da Expressão Gênica , Genoma Fúngico , Modelos Biológicos , Modelos Genéticos , Nucleossomos/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA