Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(50): E11864-E11873, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478060

RESUMO

Phytochrome A (phyA) is the only plant photoreceptor that perceives far-red light and then mediates various responses to this signal. Phosphorylation and dephosphorylation of oat phyA have been extensively studied, and it was shown that phosphorylation of a serine residue in the hinge region of oat phyA could regulate the interaction of phyA with its signal transducers. However, little is known about the role of the hinge region of Arabidopsis phyA. Here, we report that three sites in the hinge region of Arabidopsis phyA (i.e., S590, T593, and S602) are essential in regulating phyA function. Mutating all three of these sites to either alanines or aspartic acids impaired phyA function, changed the interactions of mutant phyA with FHY1 and FHL, and delayed the degradation of mutant phyA upon light exposure. Moreover, the in vivo formation of a phosphorylated phyA form was greatly affected by these mutations, while our data indicated that the abundance of this phosphorylated phyA form correlated well with the extent of phyA function, thus suggesting a pivotal role of the phosphorylated phyA in inducing the far-red light response. Taking these data together, our study reveals the important role of the hinge region of Arabidopsis phyA in regulating phyA phosphorylation and function, thus linking specific residues in the hinge region to the regulatory mechanisms of phyA phosphorylation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fitocromo A/química , Fitocromo A/metabolismo , Transporte Ativo do Núcleo Celular , Substituição de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Luz , Mutagênese Sítio-Dirigida , Fosforilação , Fitocromo/metabolismo , Fitocromo A/genética , Plantas Geneticamente Modificadas , Proteólise , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligases/metabolismo
2.
Mol Cell ; 31(4): 607-613, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18722184

RESUMO

Fine tuning of light signaling is crucial to plant development. Following light-triggered nuclear translocation, the photoreceptor phytochrome A (phyA) regulates gene expression under continuous far-red light and is rapidly destabilized upon red light irradiation by E3 ubiquitin ligases, including COP1. Here we provide evidence that the light signaling repressors SPA proteins contribute to COP1-mediated phyA degradation and that a COP1/SPA1 protein complex is tightly associated with phyA ubiquitination activity. Furthermore, a phosphorylated phyA form accumulates in the nucleus and preferentially associates with the COP1/SPA1 complex. In contrast, underphosphorylated phyA predominantly associates with the phyA-signaling intermediates FHY3 and FHY1. However, COP1 associates with underphosphorylated phyA in the absence of FHY3 or FHY1, suggesting that phyA associations with FHY3 and FHY1 protect underphosphorylated phyA from being recognized by the COP1/SPA complex. We propose that light-induced phyA phosphorylation acts as a switch controlling differential interactions of the photoreceptor with signal propagation or attenuation machineries.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Luz , Fitocromo A/metabolismo , Fitocromo/metabolismo , Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Fosforilação/efeitos da radiação , Ligação Proteica/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos da radiação
3.
PLoS Genet ; 9(5): e1003525, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23717215

RESUMO

In the plant Arabidopsis thaliana, multiple quantitative trait loci (QTLs), including RFO2, account for the strong resistance of accession Columbia-0 (Col-0) and relative susceptibility of Taynuilt-0 (Ty-0) to the vascular wilt fungus Fusarium oxysporum forma specialis matthioli. We find that RFO2 corresponds to diversity in receptor-like protein (RLP) genes. In Col-0, there is a tandem pair of RLP genes: RFO2/At1g17250 confers resistance while RLP2 does not. In Ty-0, the highly diverged RFO2 locus has one RLP gene conferring weaker resistance. While the endogenous RFO2 makes a modest contribution to resistance, transgenic RFO2 provides strong pathogen-specific resistance. The extracellular leucine-rich repeats (eLRRs) in RFO2 and RLP2 are interchangeable for resistance and remarkably similar to eLRRs in the receptor-like kinase PSY1R, which perceives tyrosine-sulfated peptide PSY1. Reduced infection in psy1r and mutants of related phytosulfokine (PSK) receptor genes PSKR1 and PSKR2 shows that tyrosine-sulfated peptide signaling promotes susceptibility. The related eLRRs in RFO2 and PSY1R are not interchangeable; and expression of the RLP nPcR, in which eLRRs in RFO2 are replaced with eLRRs in PSY1R, results in constitutive resistance. Counterintuitively, PSY1 signaling suppresses nPcR because psy1r nPcR is lethal. The fact that PSK signaling does not similarly affect nPcR argues that PSY1 signaling directly downregulates the expression of nPcR. Our results support a speculative but intriguing model to explain RFO2's role in resistance. We propose that F. oxysporum produces an effector that inhibits the normal negative feedback regulation of PSY1R, which stabilizes PSY1 signaling and induces susceptibility. However, RFO2, acting as a decoy receptor for PSY1R, is also stabilized by the effector and instead induces host immunity. Overall, the quantitative resistance of RFO2 is reminiscent of the better-studied monogenic resistance traits.


Assuntos
Fusarium/patogenicidade , Peptídeos/metabolismo , Doenças das Plantas , Raízes de Plantas/genética , Tirosina/análogos & derivados , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fusarium/genética , Fusarium/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos/química , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sinais Direcionadores de Proteínas/genética , Locos de Características Quantitativas , Transdução de Sinais , Tirosina/química , Tirosina/metabolismo
4.
Plant Cell ; 24(5): 1907-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22582101

RESUMO

Emerging plants have to adapt to a high ratio of far-red light (FR)/red light (R) light in the canopy before they reach the R-enriched direct sunlight. Phytochrome A (phyA) is the single dominant photoreceptor in young Arabidopsis thaliana seedlings that initiates photomorphogenesis in response to a FR-enriched environment and transduces increasing R signals to early responsive genes. To date, how phyA differentially transmits FR and R signals to downstream genes remains obscure. Here, we present a phyA pathway in which FAR-RED ELONGATED HYPOCOTYL1 (FHY1), an essential partner of phyA, directly guides phyA to target gene promoters and coactivates transcription. Furthermore, we identified two phosphorylation sites on FHY1, Ser-39 and Thr-61, whose phosphorylation by phyA under R inhibits phyA signaling at each step of its pathway. Deregulation of FHY1 phosphorylation renders seedlings colorblind to FR and R. Finally, we show that the weaker phyA response resulting from FHY1 phosphorylation ensures the seedling deetiolation process in response to a R-enriched light condition. Collectively, our results reveal FHY1 phosphorylation as a key mechanism for FR/R spectrum-specific responses in plants and an essential event for plant adaption to changing light conditions in nature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Fitocromo/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosforilação/efeitos da radiação , Fitocromo/genética , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação
5.
Plant Cell ; 22(11): 3634-49, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21097709

RESUMO

Phytochrome A (phyA) is the primary photoreceptor responsible for perceiving and mediating various responses to far-red light in Arabidopsis thaliana. FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and its homolog FHY1-LIKE (FHL) are two small plant-specific proteins essential for light-regulated phyA nuclear accumulation and subsequent phyA signaling processes. FHY3 and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1) are two transposase-derived transcription factors that directly activate FHY1/FHL transcription and thus mediate subsequent phyA nuclear accumulation and responses. Here, we report that ELONGATED HYPOCOTYL5 (HY5), a well-characterized bZIP transcription factor involved in promoting photomorphogenesis, directly binds ACGT-containing elements a few base pairs away from the FHY3/FAR1 binding sites in the FHY1/FHL promoters. We demonstrate that HY5 physically interacts with FHY3/FAR1 through their respective DNA binding domains and negatively regulates FHY3/FAR1-activated FHY1/FHL expression under far-red light. Together, our data show that HY5 plays a role in negative feedback regulation of phyA signaling by attenuating FHY3/FAR1-activated FHY1/FHL expression, providing a mechanism for fine-tuning phyA signaling homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/metabolismo , Fitocromo A/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Regiões Promotoras Genéticas , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
7.
Plant Cell ; 21(2): 494-506, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19208901

RESUMO

Phytochrome A (phyA) is the primary photoreceptor for mediating the far-red high irradiance response in Arabidopsis thaliana. FAR-RED ELONGATED HYPOCOTYL1 (FHY1) and its homolog FHY1-LIKE (FHL) define two positive regulators in the phyA signaling pathway. These two proteins have been reported to be essential for light-regulated phyA nuclear accumulation through direct physical interaction with phyA. Here, we report that FHY1 protein is phosphorylated rapidly after exposure to red light. Subsequent exposure to far-red light after the red light pulse reverses FHY1 phosphorylation. Such a phenomenon represents a classical red/far-red reversible low fluence response. The phosphorylation of FHY1 depends on functioning phyA but not on other phytochromes and cryptochromes. Furthermore, we demonstrate that FHY1 and FHL directly interact with phyA by bimolecular fluorescence complementation and that both FHY1 and FHL interact more stably with the Pr form of phyA in Arabidopsis seedlings by coimmunoprecipitation. Finally, in vitro kinase assays confirmed that a recombinant phyA is able to robustly phosphorylate FHY1. Together, our results suggest that phyA may differentially regulate FHY1 and FHL activity through direct physical interaction and red/far-red light reversible phosphorylation to fine-tune their degradation rates and resulting light responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Fitocromo A/fisiologia , Fitocromo/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Criptocromos , Flavoproteínas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fosforilação/efeitos da radiação , Fitocromo/genética , Fitocromo/fisiologia , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fatores de Transcrição/metabolismo
8.
Plant Cell ; 18(8): 1991-2004, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16844902

RESUMO

Repression of photomorphogenesis in Arabidopsis thaliana requires activity of the COP9 signalosome (CSN), CDD, and COP1 complexes, but how these three complexes work in concert to accomplish this important developmental switch has remained unknown. Here, we demonstrate that Arabidopsis CULLIN4 (CUL4) associates with the CDD complex and a common catalytic subunit to form an active E3 ubiquitin ligase both in vivo and in vitro. The partial loss of function of CUL4 resulted in a constitutive photomorphogenic phenotype with respect to morphogenesis and light-regulated gene expression. Furthermore, CUL4 exhibits a synergistic genetic interaction with COP10 and DET1. Therefore, this CUL4-based E3 ligase is essential for the repression of photomorphogenesis. This CUL4-based E3 ligase appears to associate physically with COP1 E3 ligase and positively regulates the COP1-dependent degradation of photomorphogenesis-promoting transcription factors, whereas the CSN controls the biochemical modification of CUL4 essential for E3 activity. Thus, this study suggests a biochemical activity connection between CSN and CDD complexes in their cooperation with COP1 in orchestrating the repression of photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte/metabolismo , Proteínas Culina/genética , Luz , Ubiquitina-Proteína Ligases/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Culina/metabolismo , Proteínas Culina/fisiologia , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Dados de Sequência Molecular , Morfogênese , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Plant J ; 41(5): 767-78, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15703063

RESUMO

Tandem affinity purification (TAP) strategies constitute an efficient approach for protein complex purification from many different organisms. However, the application of such strategies for purifying endogenous Arabidopsis multi-protein complexes has not yet been reported. Here, we describe an alternative TAP (TAPa) system that successfully allows protein complex purification from Arabidopsis. In our newly generated TAPa tag we have replaced the tobacco etch virus (TEV) protease cleavage site with the more specific and low-temperature active rhinovirus 3C protease site. In addition, the second purification step can now be performed through two different affinity tags: a six His repeat or nine copies of a myc repeat. To examine our purification procedure we generated a C-terminal fusion between the TAPa tag and CSN3, a component of the multi-protein COP9 signalosome (CSN) complex. Subsequent analysis showed that CSN3-TAPa could rescue a csn3 mutant, and that the components of the CSN complex could be co-purified with CSN3-TAPa. As part of our long running interest in light signaling in Arabidopsis we have generated Arabidopsis transgenic lines harboring, both N-terminal and C-terminal TAPa fusions of many different light signaling pathway regulators. Molecular characterization of these transgenic lines showed fusion expression in 88% of the genes analyzed and that this expression is largely independent of the fusion orientation. Mutant complementation analysis showed that most of the TAPa fusions analyzed retained function of the wild-type proteins. Taken together, the data demonstrate the suitability of the TAPa system to allow efficient multi-protein complex isolation from stably transformed Arabidopsis.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cromatografia de Afinidade , Substâncias Macromoleculares/isolamento & purificação , Modelos Biológicos , Dados de Sequência Molecular
10.
Plant Physiol ; 139(3): 1234-43, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16244150

RESUMO

Phytochrome A (phyA) is the primary photoreceptor mediating responses to far-red light. Among the phyA downstream signaling components, Far-red Elongated Hypocotyl 1 (FHY1) is a genetically defined positive regulator of photomorphogenesis in far-red light. Both physiological and genomic characterization of the fhy1 mutants indicated a close functional relationship of FHY1 with phyA. Here, we showed that FHY1 is most abundant in young seedlings grown in darkness and is quickly down-regulated during further seedling development and by light exposure. By using light-insensitive 35S promoter-driven functional beta-glucuronidase-FHY1 and green fluorescent protein-FHY1 fusion proteins, we showed that this down-regulation of FHY1 protein abundance by light is largely at posttranscriptional level and most evident in the nuclei. The light-triggered FHY1 protein reduction is primarily mediated through the 26S proteasome-dependent protein degradation. Further, phyA is directly involved in mediating the light-triggered down-regulation of FHY1, and the dark accumulation of FHY1 requires functional pleiotropic Constitutive Photomorphogenic/De-Etiolated/Fusca proteins. Our data indicate that phyA, the 26S proteasome, and the Constitutive Photomorphogenic/De-Etiolated/Fusca proteins are all involved in the light regulation of FHY1 protein abundance during Arabidopsis (Arabidopsis thaliana) seedling development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Fitocromo A/metabolismo , Fitocromo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Escuridão , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes Reporter/genética , Hipocótilo/citologia , Mutação/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Plantas Geneticamente Modificadas , Processamento de Proteína Pós-Traducional/efeitos da radiação , Transporte Proteico , Proteínas Recombinantes de Fusão , Plântula/anatomia & histologia , Plântula/citologia
11.
Plant Cell ; 17(4): 1180-95, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15772280

RESUMO

Cullin-based E3 ubiquitin ligases play important roles in the regulation of diverse developmental processes and environmental responses in eukaryotic organisms. Recently, it was shown in Schizosaccharomyces pombe, Caenorhabditis elegans, and mammals that Cullin3 (CUL3) directly associates with RBX1 and BTB domain proteins in vivo to form a new family of E3 ligases, with the BTB protein subunit functioning in substrate recognition. Here, we demonstrate that Arabidopsis thaliana has two redundant CUL3 (AtCUL3) genes that are essential for embryo development. Besides supporting anticipated specific AtCUL3 interactions with the RING protein AtRBX1 and representative Arabidopsis proteins containing a BTB domain in vitro, we show that AtCUL3 cofractionates and specifically associates with AtRBX1 and a representative BTB protein in vivo. Similar to the AtCUL1 subunit of the SKP1-CUL1-F-box protein-type E3 ligases, the AtCUL3 subunit of the BTB-containing E3 ligase complexes is subjected to modification and possible regulation by the ubiquitin-like protein Related to Ubiquitin in vivo. Together with the presence of large numbers of BTB proteins with diverse structural features and expression patterns, our data suggest that Arabidopsis has conserved AtCUL3-RBX1-BTB protein E3 ubiquitin ligases to target diverse protein substrates for degradation by the ubiquitin/proteasome pathway.


Assuntos
Arabidopsis/enzimologia , Proteínas de Transporte/metabolismo , Sementes/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas Culina , Regulação da Expressão Gênica de Plantas/fisiologia , Substâncias Macromoleculares/metabolismo , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína/fisiologia , Sementes/embriologia , Sementes/genética
12.
Plant Cell ; 16(7): 1870-82, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15208391

RESUMO

Ubiquitin/proteasome-mediated protein degradation controls various developmental pathways in eukaryotes. Cullin-containing complexes are both versatile and abundant groups of RING family ubiquitin E3 ligases, whose activities are subject to control by RUB/Nedd8 (for related to ubiquitin/neural precursor cell-expressed developmentally downregulated 8) modification of their cullin subunits. Here, we report the identification of an Arabidopsis thaliana counterpart of human CAND1 (cullin-associated and neddylation-dissociated) and demonstrate that it can preferentially interact with unmodified CUL1. The Arabidopsis cand1-1 null mutant displays distinct phenotypes, including late flowering, aerial rosettes, floral organ defects, low fertility, dwarfism, loss of apical dominance, and altered responses to multiple plant hormones. Molecular analyses show that many of these defects are because of compromised activity of CUL1-containing ubiquitin E3 ligases, indicating that CAND1 is required for their optimal activity. Furthermore, the cand1-1 mutant displays a partial constitutive photomorphogenic phenotype and has defects in HY5 degradation in the absence of light, a process mediated by a different RING family E3, COP1. Thus, our data provides genetic support for a critical role of CAND1 in regulating various ubiquitin E3 ligases and their targeted cellular and developmental pathways.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas Culina/genética , Ubiquitina/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mapeamento Cromossômico , Proteínas Culina/metabolismo , DNA Bacteriano/genética , Flores/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Ubiquitina-Proteína Ligases/metabolismo
13.
Genes Dev ; 17(21): 2642-7, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14597662

RESUMO

Arabidopsis COP1 is a constitutive repressor of photomorphogenesis that interacts with photomorphogenesis-promoting factors such as HY5 to promote their proteasome-mediated degradation. SPA1 is a repressor of phytochrome A-mediated responses to far-red light. Here we report that COP1 acts as part of a large protein complex and interacts with SPA1 in a light-dependent manner. We further demonstrate the E3 ubiquitin ligase activity of COP1 on HY5 in vitro and the alteration of that activity by SPA1. Thus, the COP1-SPA1 interaction defines a critical step in coordinating COP1-mediated ubiquitination and subsequent degradation of HY5 with PHYA signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Fitocromo/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Fitocromo A , Ubiquitina-Proteína Ligases/metabolismo
14.
Plant Physiol ; 135(2): 773-82, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15208423

RESUMO

Here, we report our effort in generating an ORFeome collection for the Arabidopsis transcription factor (TF) genes. In total, ORFeome clones representing 1,282 Arabidopsis TF genes have been obtained in the Gateway high throughput cloning pENTR vector, including 411 genes whose annotation lack cDNA support. All the ORFeome inserts have also been mobilized into a yeast expression destination vector, with an estimated 85% rate of expressing the respective proteins. Sequence analysis of these clones revealed that 34 of them did not match with either the reported cDNAs or current predicted open-reading-frame sequences. Among those, novel alternative splicing of TF gene transcripts is responsible for the observed differences in at least five genes. However, those alternative splicing events do not appear to be differentially regulated among distinct Arabidopsis tissues examined. Lastly, expression of those TF genes in 17 distinct Arabidopsis organ types and the cultured cells was profiled using a 70-mer oligo microarray.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genoma de Planta , Fases de Leitura Aberta/genética , Fatores de Transcrição/genética , Processamento Alternativo/genética , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA