Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Small ; : e2402035, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770746

RESUMO

Solid-state batteries (SSBs) are under development as high-priority technologies for safe and energy-dense next-generation electrochemical energy storage systems operating over a wide temperature range. Solid-state electrolytes (SSEs) exhibit high thermal stability and, in some cases, the ability to prevent dendrite growth through a physical barrier, and compatibility with the "holy grail" metallic lithium. These unique advantages of SSEs have spurred significant research interests during the last decade. Garnet-type SSEs, that is, Li7La3Zr2O12 (LLZO), are intensively investigated due to their high Li-ion conductivity and exceptional chemical and electrochemical stability against lithium metal anodes. However, poor interfacial contact with cathode materials, undesirable lithium plating along grain boundaries, and moisture-induced chemical degradation greatly hinder the practical implementation of LLZO-based SSEs for SSBs. In this review, the recent advances in synthesis methods, modification strategies, corresponding mechanisms, and applications of garnet-based SSEs in SSBs are critically summarized. Furthermore, a comprehensive evaluation of the challenges and development trends of LLZO-based electrolytes in practical applications is presented to accelerate their development for high-performance SSBs.

2.
Langmuir ; 40(1): 906-914, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38130111

RESUMO

The unique two-dimensional layered structure of BiOCl makes it highly promising for energy storage applications. In this study, we successfully synthesized BiOCl nanoparticles encapsulated in N-doped carbon nanonecklaces (BiOCl NPs/N-CNNs) using well-established electrospinning and solvothermal substitution. As an anode material for lithium-ion batteries, BiOCl NPs/N-CNNs exhibited enhanced rate performance, delivering a capacity of 220.2 mA h g-1 at 8 A g-1. Furthermore, it demonstrated remarkable long cycle stability, retaining a capacity of 200.5 mA h g-1 after 9000 cycles with a discharge rate of 8.0 A g-1. The superior electrochemical performance can be attributed to the stacked layered structure of BiOCl, facilitated by van der Waals force, as well as the ingenious nanonecklace structures. These structures not only provide fast ion diffusion pathways but also enhance electrolyte penetration and offer more active sites for Li+ insertion and extraction. Additionally, the nanonecklace structure prevents the aggregation of nanopolyhedra, promoting the complete reaction of BiOCl with Li+. Moreover, the unique nanopolyhedron structure alleviates the stress caused by the volume expansion of Bi nanoparticles during cycling and reduces the internal resistance of the electrode.

3.
Nature ; 556(7701): 355-359, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670263

RESUMO

Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently revealed interesting physical phenomena, including the quantum spin Hall effect1,2, valley polarization3,4 and two-dimensional superconductivity 5 , suggesting potential applications for functional devices6-10. However, of the numerous compounds available, only a handful, such as Mo- and W-based TMCs, have been synthesized, typically via sulfurization11-15, selenization16,17 and tellurization 18 of metals and metal compounds. Many TMCs are difficult to produce because of the high melting points of their metal and metal oxide precursors. Molten-salt-assisted methods have been used to produce ceramic powders at relatively low temperature 19 and this approach 20 was recently employed to facilitate the growth of monolayer WS2 and WSe2. Here we demonstrate that molten-salt-assisted chemical vapour deposition can be broadly applied for the synthesis of a wide variety of two-dimensional (atomically thin) TMCs. We synthesized 47 compounds, including 32 binary compounds (based on the transition metals Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one quaternary and one quinary), and two heterostructured compounds. We elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate. Most of the synthesized materials in our library are useful, as supported by evidence of superconductivity in our monolayer NbSe2 and MoTe2 samples21,22 and of high mobilities in MoS2 and ReS2. Although the quality of some of the materials still requires development, our work opens up opportunities for studying the properties and potential application of a wide variety of two-dimensional TMCs.

4.
Nano Lett ; 18(5): 3290-3296, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29667834

RESUMO

Theoretically, the accomplishment of phase transformation requires sufficient energy to overcome the barriers of structure rearrangements. The transition of an amorphous structure to a crystalline structure is implemented traditionally by heating at high temperatures. However, phase transformation under ambient condition without involving external energy has not been reported. Here, we demonstrate that the phase transformation of GeO2 glass to nanocrystals can be triggered at ambient conditions when subjected to aqueous environments. In this case, continuous chemical reactions between amorphous GeO2 and water are responsible for the amorphous-to-crystalline transition. The dynamic evolution process is monitored by using in situ liquid-cell transmission electron microscopy, clearly revealing this phase transformation. It is the hydrolysis of amorphous GeO2 that leads to the formation of clusters with a size of ∼0.4 nm, followed by the development of dense liquid clusters, which subsequently aggregate to facilitate the nucleation and growth of GeO2 nanocrystals. Our finding breaks the traditional understanding of phase transformation and will bring about a significant revolution and contribution to the classical glass-crystallization theories.

5.
Small ; 13(40)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28845916

RESUMO

Tungsten ditelluride (WTe2 ) is a semimetal with orthorhombic Td phase that possesses some unique properties such as Weyl semimetal states, pressure-induced superconductivity, and giant magnetoresistance. Here, the high-pressure properties of WTe2 single crystals are investigated by Raman microspectroscopy and ab initio calculations. WTe2 shows strong plane-parallel/plane-vertical vibrational anisotropy, stemming from its intrinsic Raman tensor. Under pressure, the Raman peaks at ≈120 cm-1 exhibit redshift, indicating structural instability of the orthorhombic Td phase. WTe2 undergoes a phase transition to a monoclinic T' phase at 8 GPa, where the Weyl states vanish in the new T' phase due to the presence of inversion symmetry. Such Td to T' phase transition provides a feasible method to achieve Weyl state switching in a single material without doping. The new T' phase also coincides with the appearance of superconductivity reported in the literature.

6.
Opt Express ; 25(13): 14691-14696, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789052

RESUMO

Engineering the surrounding electromagnetic environment of light emitters by photonic engineering, e.g. photonic crystal cavity, can dramatically enhance its spontaneous emission rate through the Purcell effect. Here we report an enhanced spontaneous emission rate of monolayer molybdenum disulfide (MoS2) by coupling it to a 1D silicon nitride photonic crystal. A four times stronger photoluminescence (PL) intensity of MoS2 in a 1D photonic crystal cavity than un-coupled emission is observed. Considering the relative ease of fabrication and the natural integration with a silicon-based system, the high Purcell factor renders this device as a highly promising platform for applications such as visible solid-state cavity quantum electrodynamics (QED).

7.
Phys Chem Chem Phys ; 19(3): 2276-2285, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28054674

RESUMO

Pristine, oxidized and defunctionalized carbon nanotubes (CNTs) were studied by Raman spectroscopy, X-ray diffraction, transmission electron microscopy and low temperature nitrogen adsorption. The Raman spectra of the studied samples in the range of 900-1800 cm-1 were deconvoluted into five components to reveal the CNT oxidation mechanism. It was found that the oxidation resulted in the reduction of graphite components and ordering of both the structured and defect part of CNTs. Acid treatment also led to different types of disorders in the surface layers of CNTs. Polyene-type, polyphenylene-type and turbostratic fragments were detected as a result of partial exfoliation. Investigation of defunctionalized CNTs showed the ordering of edge carbon atoms as well as the invariability of the total amount of defects. The study of CNTs as supports for Co-based catalysts revealed a simultaneous decrease in the number of defect fragments and increase in the number of edge carbon atoms during catalyst preparation and reduction.

8.
Small ; 12(27): 3712-22, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27253884

RESUMO

Parkinson's disease (PD) is a progressive disease of the nervous system, and is currently managed through commercial tablets that do not sufficiently enable controlled, sustained release capabilities. It is hypothesized that a drug delivery system that provides controlled and sustained release of PD drugs would afford better management of PD. Hollow microcapsules composed of poly-l-lactide (PLLA) and poly (caprolactone) (PCL) are prepared through a modified double-emulsion technique. They are loaded with three PD drugs, i.e., levodopa (LD), carbidopa (CD), and entacapone (ENT), at a ratio of 4:1:8, similar to commercial PD tablets. LD and CD are localized in both the hollow cavity and PLLA/PCL shell, while ENT is localized in the PLLA/PCL shell. Release kinetics of hydrophobic ENT is observed to be relatively slow as compared to the other hydrophilic drugs. It is further hypothesized that encapsulating ENT into PCL as a surface coating onto these microcapsules can aid in accelerating its release. Now, these spray-coated hollow microcapsules exhibit similar release kinetics, according to Higuchi's rate, for all three drugs. The results suggest that multiple drug encapsulation of LD, CD, and ENT in gastric floating microcapsules could be further developed for in vivo evaluation for the management of PD.


Assuntos
Cápsulas/química , Doença de Parkinson/tratamento farmacológico , Animais , Caproatos/química , Carbidopa/administração & dosagem , Carbidopa/química , Carbidopa/uso terapêutico , Catecóis/administração & dosagem , Catecóis/química , Catecóis/uso terapêutico , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactonas/química , Levodopa/administração & dosagem , Levodopa/química , Levodopa/uso terapêutico , Microscopia Confocal , Nitrilas/administração & dosagem , Nitrilas/química , Nitrilas/uso terapêutico , Poliésteres/química
9.
Nano Lett ; 15(10): 6400-5, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26360543

RESUMO

In this work, we have demonstrated the synthesis of high-quality monolayered α-In2Se3 using physical vapor deposition method under atmospheric pressure. The quality of the In2Se3 atomic layers has been confirmed by complementary characterization technologies such as Raman/photoluminescence spectroscopies and atomic force microscope. The atomically resolved images have been obtained by the annular dark-field scanning transmission electron microscope. The field-effect transistors have been fabricated using the atomically layered In2Se3 and exhibit p-type semiconducting behaviors with the mobility up to 2.5 cm(2)/ Vs. The In2Se3 layers also show a good photoresponsivity of 340A/W, as well as 6 ms response time for the rise and 12 ms for the fall. These results make In2Se3 atomic layers a promising candidate for the optoelectronic and photosensitive device applications.

10.
Small ; 10(6): 1090-5, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24532290

RESUMO

Though the SERS effect based on pristine MoS2 is hardly observed, however, the plasma treated MoS2 nanoflakes can be used as an ideal substrate for surface enhanced Raman scattering. It is proved that the structural disorder induced generation of local dipoles and adsorption of oxygen on the plasma treated MoS2 nanosheets are the two basic and important driven forces for the enhancement of Raman signals of surface adsorbed R6G molecules.

11.
Opt Express ; 22(6): 6428-37, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663991

RESUMO

Heat-assisted magnetic recording (HAMR) is a future roadmap technology to overcome the superparamagnetic limit in high density magnetic recording. Existing HAMR schemes depend on a simultaneous magnetic stimulation and light-induced local heating of the information carrier. To achieve high-density recorded data, near-field plasmonic transducers have been proposed as light concentrators. Here we suggest and investigate in detail an alternative approach exploiting a far-field focusing device that can focus light into sub-50 nm hot-spots in the magnetic recording layer using a laser source operating at 473 nm. It is based on a recently introduced super-oscillatory flat lens improved with the use of solid immersion, giving an effective numerical aperture as high as 4.17. The proposed solution is robust and easy to integrate with the magnetic recording head thus offering a competitive advantage over plasmonic technology.

12.
Nano Lett ; 13(12): 6136-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24219630

RESUMO

Fe3O4 has long been regarded as a promising anode material for lithium ion battery due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. However, up to now no effective and scalable method has been realized to overcome the bottleneck of poor cyclability and low rate capability. In this article, we report a bottom-up strategy assisted by atomic layer deposition to graft bicontinuous mesoporous nanostructure Fe3O4 onto three-dimensional graphene foams and directly use the composite as the lithium ion battery anode. This electrode exhibits high reversible capacity and fast charging and discharging capability. A high capacity of 785 mAh/g is achieved at 1C rate and is maintained without decay up to 500 cycles. Moreover, the rate of up to 60C is also demonstrated, rendering a fast discharge potential. To our knowledge, this is the best reported rate performance for Fe3O4 in lithium ion battery to date.


Assuntos
Fontes de Energia Elétrica , Compostos Férricos/química , Grafite/química , Lítio/química , Eletrodos , Nanoestruturas/química , Propriedades de Superfície
13.
Nat Commun ; 15(1): 3295, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632230

RESUMO

Van der Waals semiconductors exemplified by two-dimensional transition-metal dichalcogenides have promised next-generation atomically thin optoelectronics. Boosting their interaction with light is vital for practical applications, especially in the quantum regime where ultrastrong coupling is highly demanded but not yet realized. Here we report ultrastrong exciton-plasmon coupling at room temperature in tungsten disulfide (WS2) layers loaded with a random multi-singular plasmonic metasurface deposited on a flexible polymer substrate. Different from seeking perfect metals or high-quality resonators, we create a unique type of metasurface with a dense array of singularities that can support nanometre-sized plasmonic hotspots to which several WS2 excitons coherently interact. The associated normalized coupling strength is 0.12 for monolayer WS2 and can be up to 0.164 for quadrilayers, showcasing the ultrastrong exciton-plasmon coupling that is important for practical optoelectronic devices based on low-dimensional semiconductors.

14.
Nanotechnology ; 24(18): 185301, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23579281

RESUMO

Nanogaps between metal nanostructures are useful in localizing optical energy in plasmonic antennas, but are challenging to directly pattern. Patterning with the positive-tone polymethyl methacrylate (PMMA) resist causes an undesirable spread in nanogap dimensions. On the other hand, the negative-tone hydrogen silsesquioxane (HSQ) resist possesses the high resolution suited for the definition of nanogaps. However, it requires a hydrofluoric acid solution for liftoff, making it incompatible with the quartz or glass substrates used in optical devices. In this work, we created free-standing nanostencils in HSQ with sub-10 nm dimensions onto PMMA supports, which allow liftoff in organic solvents, thus extending this method to a broad range of substrate materials. The cross-sectional profiles of the nanogaps formed between the gold nanostructures were imaged in a transmission electron microscope and measured to be ~8 nm. We demonstrated the utility of this process in fabricating entire arrays of dimer nanostructures with sub-10 nm gaps. Using a surface enhanced Raman scattering setup, an order of magnitude increase in peak intensity was observed when the fields in the gap were resonantly excited compared to when the fields were localized at the corners of the nanostructures.

15.
Adv Sci (Weinh) ; 10(9): e2206836, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36698299

RESUMO

Layered vanadium-based oxides are the promising cathode materials for aqueous zinc-ion batteries (AZIBs). Herein, an in situ electrochemical strategy that can effectively regulate the interlayer distance of layered NH4 V4 O10 quantitatively is proposed and a close relationship between the optimal performances with interlayer space is revealed. Specifically, via increasing the cutoff voltage from 1.4, 1.6 to 1.8 V, the interlayer space of NH4 V4 O10 can be well-controlled and enlarged to 10.21, 11.86, and 12.08 Å, respectively, much larger than the pristine one (9.5 Å). Among them, the cathode being charging to 1.6 V (NH4 V4 O10 -C1.6), demonstrates the best Zn2+ storage performances including high capacity of 223 mA h g-1 at 10 A g-1 and long-term stability with capacity retention of 97.5% over 1000 cycles. Such superior performances can be attributed to a good balance among active redox sites, charge transfer kinetics, and crystal structure stability, enabled by careful control of the interlayer space. Moreover, NH4 V4 O10 -C1.6 delivers NH4 + storage performances whose capacity reaches 296 mA h g-1 at 0.1 A g-1 and lifespan lasts over 3000 cycles at 5 A g-1 . This study provides new insights into understand the limitation of interlayer space for ion storage in aqueous media and guides exploration of high-performance cathode materials.

16.
Nat Commun ; 14(1): 6501, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845205

RESUMO

Exploiting solid electrolyte (SE) materials with high ionic conductivity, good interfacial compatibility, and conformal contact with electrodes is essential for solid-state sodium metal batteries (SSBs). Here we report a crystalline Na5SmSi4O12 SE which features high room-temperature ionic conductivity of 2.9 × 10-3 S cm-1 and a low activation energy of 0.15 eV. All-solid-state symmetric cell with Na5SmSi4O12 delivers excellent cycling life over 800 h at 0.15 mA h cm-2 and a high critical current density of 1.4 mA cm-2. Such excellent electrochemical performance is attributed to an electrochemically induced in-situ crystalline-to-amorphous (CTA) transformation propagating from the interface to the bulk during repeated deposition and stripping of sodium, which leads to faster ionic transport and superior interfacial properties. Impressively, the Na|Na5SmSi4O12|Na3V2(PO4)3 sodium metal batteries achieve a remarkable cycling performance over 4000 cycles (6 months) with no capacity loss. These results not only identify Na5SmSi4O12 as a promising SE but also emphasize the potential of the CTA transition as a promising mechanism towards long-lasting SSBs.

17.
Adv Mater ; 35(33): e2302248, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37165546

RESUMO

Excitonic resonance in atomically thin semiconductors offers a favorite platform to study 2D nanophotonics in both classical and quantum regimes and promises potentials for highly tunable and ultra-compact optical devices. The understanding of charge density dependent exciton-trion conversion is the key for revealing the underlaying physics of optical tunability. Nevertheless, the insufficient and inefficient light-matter interactions hinder the observation of trionic phenomenon and the development of excitonic devices for dynamic power-efficient electro-optical applications. Here, by engaging an optical cavity with atomically thin transition metal dichalcogenides (TMDCs), greatly enhanced exciton-trion conversion is demonstrated at room temperature (RT) and achieve electrical modulation of reflectivity of ≈40% at exciton and 7% at trion state, which correspondingly enables a broadband large phase tuning in monolayer tungsten disulfide. Besides the absorptive conversion, ≈100% photoluminescence conversion from excitons to trions is observed at RT, illustrating a clear physical mechanism of an efficient exciton-trion conversion for extraordinary optical performance. The results indicate that both excitons and trions can play significant roles in electrical modulation of the optical parameters of TMDCs at RT. The work shows the real possibility for realizing electrical tunable and multi-functional ultra-thin optical devices using 2D materials.

18.
Anal Chem ; 84(2): 908-16, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22107062

RESUMO

Surface Enhanced Raman Spectroscopy (or SERS) has received tremendous attention in the past three decades. However, the extremely-confined probe volume (1 nm) of the plasmonic hot-spots occurring on a conventional roughened SERS-active metallic surface has limited value in macro-molecular studies. In this article, we show the plausibility of generating large SERS hot-spot volumes on an atomically-flat metal surface based upon a special 3D adiabatic plasmonic nano-focusing effect brought about by an array of nano-scale superlenses. We experimentally demonstrate the feasibility of this particular approach and report, for the first time, the acquisition of whole-protein SERS spectra of a layer of test protein, Cytochrome-c, using a custom-made Otto-Raman spectroscopy system equipped with nano-fluidics. Our study shows the potential of whole-protein SERS spectroscopy as a useful analytical tool that complements surface probe microscopies.


Assuntos
Citocromos c/química , Ouro/química , Lentes , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanotecnologia/métodos , Análise Espectral Raman , Propriedades de Superfície
19.
Small ; 8(16): 2515-23, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22539414

RESUMO

Herein is reported a study of Co-assisted crystallographic etching of graphite in hydrogen environment at temperatures above 750 °C. Unlike nanoparticle etching of graphite surface that leaves trenches, the Co could fill the hexagonal or triangular etch-pits that progressively enlarge, before finally balling-up, leaving well-defined etched pits enclosed by edges oriented at 60° or 120° relative to each other. The morphology and chirality of the etched edges have been carefully studied by transmission electron microscopy and Raman analysis, the latter indicating zigzag edges. By introducing defects to the graphite using an oxygen plasma or by utilizing the edges of graphene/graphite flakes (which are considered as defects), an ability to define the position of the etched edges is demonstrated. Based on these results, graphite strips are successfully etched from the edges and graphitic ribbons are fabricated which are enclosed by purely zigzag edges. These fabricated graphitic ribbons could potentially be isolated layer-by-layer and transferred to a device substrate for further processing into graphene nanoribbon transistors.

20.
Adv Mater ; 34(25): e2107138, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34700359

RESUMO

Optoelectronic materials that allow on-chip integrated light signal emitting, routing, modulation, and detection are crucial for the development of high-speed and high-throughput optical communication and computing technologies. Interlayer excitons in 2D van der Waals heterostructures, where electrons and holes are bounded by Coulomb interaction but spatially localized in different 2D layers, have recently attracted intense attention for their enticing properties and huge potential in device applications. Here, a general view of these 2D-confined hydrogen-like bosonic particles and the state-of-the-art developments with respect to the frontier concepts and prototypes is presented. Staggered type-II band alignment enables expansion of the interlayer direct bandgap from the intrinsic visible in monolayers up to the near- or even mid-infrared spectrum. Owing to large exciton binding energy, together with ultralong lifetime, room-temperature exciton devices and observation of quantum behaviors are demonstrated. With the rapid advances, it can be anticipated that future studies of interlayer excitons will not only allow the construction of all-exciton information processing circuits but will also continue to enrich the panoply of ideas on quantum phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA