Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 187(19): 5253-5266.e16, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39173632

RESUMO

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgos) and the DNA defense module DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.


Assuntos
Proteínas de Bactérias , Transferência Genética Horizontal , Plasmídeos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA/metabolismo , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Plasmídeos/metabolismo , Plasmídeos/genética
2.
Mol Cell ; 83(24): 4586-4599.e5, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096827

RESUMO

SIR2-HerA, a bacterial two-protein anti-phage defense system, induces bacterial death by depleting NAD+ upon phage infection. Biochemical reconstitution of SIR2, HerA, and the SIR2-HerA complex reveals a dynamic assembly process. Unlike other ATPases, HerA can form various oligomers, ranging from dimers to nonamers. When assembled with SIR2, HerA forms a hexamer and converts SIR2 from a nuclease to an NAD+ hydrolase, representing an unexpected regulatory mechanism mediated by protein assembly. Furthermore, high concentrations of ATP can inhibit NAD+ hydrolysis by the SIR2-HerA complex. Cryo-EM structures of the SIR2-HerA complex reveal a giant supramolecular assembly up to 1 MDa, with SIR2 as a dodecamer and HerA as a hexamer, crucial for anti-phage defense. Unexpectedly, the HerA hexamer resembles a spiral staircase and exhibits helicase activities toward dual-forked DNA. Together, we reveal the supramolecular assembly of SIR2-HerA as a unique mechanism for switching enzymatic activities and bolstering anti-phage defense strategies.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sirtuínas , Fagos T , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , NAD , Sirtuínas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo
3.
Nature ; 621(7977): 154-161, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37494956

RESUMO

Although eukaryotic and long prokaryotic Argonaute proteins (pAgos) cleave nucleic acids, some short pAgos lack nuclease activity and hydrolyse NAD(P)+ to induce bacterial cell death1. Here we present a hierarchical activation pathway for SPARTA, a short pAgo consisting of an Argonaute (Ago) protein and TIR-APAZ, an associated protein2. SPARTA progresses through distinct oligomeric forms, including a monomeric apo state, a monomeric RNA-DNA-bound state, two dimeric RNA-DNA-bound states and a tetrameric RNA-DNA-bound active state. These snapshots together identify oligomerization as a mechanistic principle of SPARTA activation. The RNA-DNA-binding channel of apo inactive SPARTA is occupied by an auto-inhibitory motif in TIR-APAZ. After the binding of RNA-DNA, SPARTA transitions from a monomer to a symmetric dimer and then an asymmetric dimer, in which two TIR domains interact through charge and shape complementarity. Next, two dimers assemble into a tetramer with a central TIR cluster responsible for hydrolysing NAD(P)+. In addition, we observe unique features of interactions between SPARTA and RNA-DNA, including competition between the DNA 3' end and the auto-inhibitory motif, interactions between the RNA G2 nucleotide and Ago, and splaying of the RNA-DNA duplex by two loops exclusive to short pAgos. Together, our findings provide a mechanistic basis for the activation of short pAgos, a large section of the Ago superfamily.


Assuntos
Proteínas Argonautas , Células Procarióticas , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/classificação , Proteínas Argonautas/metabolismo , DNA/metabolismo , Ativação Enzimática , NAD/metabolismo , Células Procarióticas/metabolismo , RNA/metabolismo
4.
RNA Biol ; 21(1): 1-7, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39219231

RESUMO

Argonaute proteins (Agos) represent a highly conserved family of proteins prevalent in all domains of life and have been implicated in various biological processes. Based on the domain architecture, Agos can be divided into long Agos and short Agos. While long Agos have been extensively studied over the past two decades, short Agos, found exclusively in prokaryotes, have recently gained attention for their roles in prokaryotic immune defence against mobile genetic elements, such as plasmids and phages. Notable functional and structural studies provide invaluable insights into the underlying molecular mechanisms of representative short Ago systems. Despite the diverse domain arrangements, short Agos generally form heterodimeric complexes with their associated effector proteins, activating the effector's enzymatic activities upon target detection. The activation of effector proteins in the short Ago systems leads to bacterial cell death, a mechanism of sacrificing individuals to protect the community.


Assuntos
Proteínas Argonautas , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/química , Bactérias/metabolismo , Bactérias/genética , Relação Estrutura-Atividade , Conformação Proteica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Humanos , Modelos Moleculares
5.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649236

RESUMO

Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a central regulator of cell growth and metabolism that senses and integrates nutritional and environmental cues with cellular responses. Recent studies have revealed critical roles of mTORC1 in RNA biogenesis and processing. Here, we find that the m6A methyltransferase complex (MTC) is a downstream effector of mTORC1 during autophagy in Drosophila and human cells. Furthermore, we show that the Chaperonin Containing Tailless complex polypeptide 1 (CCT) complex, which facilitates protein folding, acts as a link between mTORC1 and MTC. The mTORC1 activates the chaperonin CCT complex to stabilize MTC, thereby increasing m6A levels on the messenger RNAs encoding autophagy-related genes, leading to their degradation and suppression of autophagy. Altogether, our study reveals an evolutionarily conserved mechanism linking mTORC1 signaling with m6A RNA methylation and demonstrates their roles in suppressing autophagy.


Assuntos
Autofagia , Proteínas de Drosophila/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metiltransferases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Metilação , Metiltransferases/genética , Receptores Nucleares Órfãos , Estabilidade de RNA , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética
6.
FASEB J ; 33(9): 9731-9741, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162939

RESUMO

Elevenin is a newly discovered novel neuropeptide. Knockdown of either elevenin or orphan receptor NlA42 transcript expression by RNA interference caused severe cuticle melanization in the brown planthopper (BPH). Injection of a synthetic elevenin peptide not only rescued the body color phenotype in dselevenin-pretreated individuals but also suppressed melanization of black insects grown in natural conditions. Real-time quantitative PCR results revealed that elevenin expression levels were highest in the brain and salivary gland. Immunohistochemistry analysis confirmed that a precursor peptide of elevenin was generated in the salivary gland, suggesting that the salivary gland might be an important neurosecretory tissue in addition to the brain in BPH. Furthermore, double-strand RNA-mediated silencing of elevenin and NlA42 resulted in down-regulation of arylalkylamine-N-acetyltransferase and up-regulation of tyrosine hydroxylase, whereas elevenin peptide injection resulted in up-regulation of N-ß-alanyldopamine synthase and aspartate 1-decarboxylase, indicating a complex regulation network for cuticle pigmentation. In addition, functional characterization demonstrated that NlA42 is a cognate receptor for elevenin, and couples to Gq and Gs proteins, triggering both PLC/Ca2+/PKC and AC/cAMP/PKA signaling pathways in response to elevenin treatment. These findings suggest that the elevenin signaling functions control BPH body color through the tyrosine-mediated cuticle melanism pathway.-Wang, S.-L., Wang, W.-W., Ma, Q., Shen, Z.-F., Zhang, M.-Q., Zhou, N.-M., Zhang, C.-X. Elevenin signaling modulates body color through the tyrosine-mediated cuticle melanism pathway.


Assuntos
Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Pigmentação/genética , Animais , Depsipeptídeos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Hemípteros/genética , Humanos , Proteínas de Insetos/genética , Neuropeptídeos/genética , Pigmentação/fisiologia , Células Sf9 , Transdução de Sinais
7.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823628

RESUMO

Gastric cancer is the most common malignant tumor of the digestive tract and is great challenge in clinical treatment. N6-(2-Hydroxyethyl)-adenosine (HEA), widely present in various fungi, is a natural adenosine derivative with many biological and pharmacological activities. Here, we assessed the antineoplastic effect of HEA on gastric carcinoma. HEA exerted cytotoxic effects against gastric carcinoma cells (SGC-7901 and AGS) in a dose and time-dependent manner. Additionally, we found that HEA induced reactive oxygen species production and mitochondrial membrane potential depolarization. Moreover, it could trigger caspase-dependent apoptosis, promoting intracellular Ca2+-related endoplasmic reticulum (ER) stress and autophagy. On the other hand, HEA could significantly inhibit the growth of transplanted tumors in nude mice and induce apoptosis of tumor tissues cells in vivo. In conclusion, HEA induced apoptosis of gastric carcinoma cells in vitro and in vivo, demonstrating that HEA is a potential chemotherapeutic agent for gastric carcinoma.


Assuntos
Adenosina/análogos & derivados , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias Gástricas/patologia , Adenosina/química , Adenosina/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/ultraestrutura
8.
FASEB J ; 32(3): 1338-1353, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101222

RESUMO

Diapause hormone (DH) is a 24-aa amidated neuropeptide that elicits the embryonic diapause of the silkworm, Bombyx mori ( Bommo), via sensitive and selective interaction with its receptor, Bommo DH receptor ( Bommo-DHR). Previous studies of the structure-activity relationship of Bommo-DH were all based on an in vivo diapause-induction bioassay, which has provided little information on the structure of Bommo-DHR or its iteration with DH. Here, to unveil the interaction of Bommo-DH with its receptor, N-terminally truncated analogs and alanine-scanning mutants of Bommo-DH were chemically synthesized and functionally evaluated by using a Cy5.5-labeled Bommo-DH competitive binding assay and Bommo-DHR-based functional assays, including cAMP assay and Ca2+ mobilization assay. Our study demonstrates that the C-terminal residues of Arg23 and Leu24 of Bommo-DH are essential for the binding and activation of Bommo-DHR, and that Trp19 and Phe20 also contribute to the functional activity of Bommo-DH. In contrast, when Gly21 or Pro22 were replaced with alanine, both mutants exhibited binding and signaling activities that were indistinguishable from the wild-type peptide. Furthermore, our homology modeling and molecular dynamics simulations, together with experimental validations, have identified the residues of Glu89, Phe172, Phe194, and Tyr299 in Bommo-DHR that are critically involved in the interaction with Bommo-DH. These results may deepen our understanding of the interactions of class-A GPCRs with their peptidic ligands, particularly those between pheromone biosynthesis-activating neuropeptide/DH family neuropeptides and their cognate receptors.-Shen, Z., Jiang, X., Yan, L., Chen, Y., Wang, W., Shi, Y., Shi, L., Liu, D., Zhou, N. Structural basis for the interaction of diapause hormone with its receptor in the silkworm, Bombyx mori.


Assuntos
Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Bombyx , Conformação Proteica , Transdução de Sinais
9.
J Biol Chem ; 292(40): 16554-16570, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28842502

RESUMO

CAPA peptides, such as periviscerokinin (PVK), are insect neuropeptides involved in many signaling pathways controlling, for example, metabolism, behavior, and reproduction. They are present in a large number of insects and, together with their cognate receptors, are important for research into approaches for improving insect control. However, the CAPA receptors in the silkworm (Bombyx mori) insect model are unknown. Here, we cloned cDNAs of two putative CAPA peptide receptor genes, BNGR-A27 and -A25, from the brain of B. mori larvae. We found that the predicted BNGR-A27 ORF encodes 450 amino acids and that one BNGR-A25 splice variant encodes a full-length isoform (BNGR-A25L) of 418 amino acid residues and another a short isoform (BNGR-A25S) of 341 amino acids with a truncated C-terminal tail. Functional assays indicated that both BNGR-A25L and -A27 are activated by the PVK neuropeptides Bom-CAPA-PVK-1 and -PVK-2, leading to a significant increase in cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. In contrast, BNGR-A25S was not significantly activated in response to the PVK peptides. Moreover, Bom-CAPA-PVK-1 directly bound to BNGR-A25L and -A27, but not BNGR-A25S. Of note, CAPA-PVK-mediated ERK1/2 phosphorylation and receptor internalization confirmed that BNGR-A25L and -A27 are two canonical receptors for Bombyx CAPA-PVKs. However, BNGR-A25S alone is a nonfunctional receptor but serves as a dominant-negative protein for BNGR-A25L. These results provide evidence that BNGR-A25L and -A27 are two functional Gq-coupled receptors for Bombyx CAPA-PVKs, enabling the further elucidation of the endocrinological roles of Bom-CAPA-PVKs and their receptors in insect biology.


Assuntos
Bombyx , Sinalização do Cálcio/fisiologia , Proteínas de Insetos , Neuropeptídeos , Receptores Acoplados a Proteínas G , Animais , Bombyx/genética , Bombyx/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
10.
Biochemistry ; 55(28): 3874-87, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27348044

RESUMO

Agonist-induced internalization plays a key role in the tight regulation of the extent and duration of G protein-coupled receptor signaling. Previously, we have shown that the Bombyx corazonin receptor (BmCrzR) activates both Gαq- and Gαs-dependent signaling cascades. However, the molecular mechanisms involved in the regulation of the internalization and desensitization of BmCrzR remain to be elucidated. Here, vectors for expressing BmCrzR fused with enhanced green fluorescent protein (EGFP) at the C-terminal end were used to further characterize BmCrzR internalization. We found that the BmCrzR heterologously expressed in HEK-293 and BmN cells was rapidly internalized from the plasma membrane into the cytoplasm in a concentration- and time-dependent manner via a ß-arrestin (Kurtz)-dependent and clathrin-independent pathway in response to agonist challenge. While most of the internalized receptors were recycled to the cell surface via early endosomes, some others were transported to lysosomes for degradation. Assays using RNA interference revealed that both GRK2 and GRK5 were essentially involved in the regulation of BmCrzR phosphorylation and internalization. Further investigations indicated that the identified cluster of Ser/Thr residues ((411)TSS(413)) was responsible for GRK-mediated phosphorylation and internalization. This is the first detailed investigation of the internalization and trafficking of Bombyx corazonin receptors.


Assuntos
Arrestina/metabolismo , Bombyx/metabolismo , Clatrina/metabolismo , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Dinaminas/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Transporte Proteico , Receptores de Neuropeptídeos/química , Transdução de Sinais
11.
bioRxiv ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39071313

RESUMO

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgo) and the D NA D efense M odule DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.

12.
bioRxiv ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39484427

RESUMO

Leveraging the rich structural information provided by AlphaFold, we used integrated experimental approaches to characterize the HerA-DUF4297 (DUF) anti-phage defense system, in which DUF is of unknown function. To infer the function of DUF, we performed structure-guided genomic analysis and found that DUF homologs are universally present in bacterial immune defense systems. One notable homolog of DUF is Cap4, a universal effector with nuclease activity in CBASS, the most prevalent anti-phage system in bacteria. To test the inferred nuclease function of DUF, we performed biochemical experiments and discovered that the DUF only exhibits activity against DNA substrates when it is bound by HerA. To understand how HerA activates DUF, we determined the structures of DUF and the HerA-DUF complex. DUF forms large oligomeric assemblies with or without HerA, suggesting that oligomerization per se is not sufficient for DUF activation. Instead, DUF activation requires dramatic topological rearrangements that propagate from HerA to the entire HerA-DUF complex, leading to reorganization of DUF for effective DNA cleavage. We further validated these structural insights by structure- guided mutagenesis. Together, these findings reveal dramatic topological rearrangements throughout the HerA-DUF complex, challenge the long-standing dogma that protein oligomerization alone activates immune signaling, and may inform the activation mechanism of CBASS.

13.
Nat Struct Mol Biol ; 31(8): 1243-1250, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627580

RESUMO

As one of the most prevalent anti-phage defense systems in prokaryotes, Gabija consists of a Gabija protein A (GajA) and a Gabija protein B (GajB). The assembly and function of the Gabija system remain unclear. Here we present cryo-EM structures of Bacillus cereus GajA and GajAB complex, revealing tetrameric and octameric assemblies, respectively. In the center of the complex, GajA assembles into a tetramer, which recruits two sets of GajB dimer at opposite sides of the complex, resulting in a 4:4 GajAB supramolecular complex for anti-phage defense. Further biochemical analysis showed that GajA alone is sufficient to cut double-stranded DNA and plasmid DNA, which can be inhibited by ATP. Unexpectedly, the GajAB displays enhanced activity for plasmid DNA, suggesting a role of substrate selection by GajB. Together, our study defines a framework for understanding anti-phage immune defense by the GajAB complex.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Microscopia Crioeletrônica , Modelos Moleculares , Bacillus cereus/virologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Multimerização Proteica , Plasmídeos/metabolismo , Plasmídeos/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química
14.
Nat Struct Mol Biol ; 31(3): 413-423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177683

RESUMO

Escherichia coli Septu system, an anti-phage defense system, comprises two components: PtuA and PtuB. PtuA contains an ATPase domain, while PtuB is predicted to function as a nuclease. Here we show that PtuA and PtuB form a stable complex with a 6:2 stoichiometry. Cryo-electron microscopy structure of PtuAB reveals a distinctive horseshoe-like configuration. PtuA adopts a hexameric arrangement, organized as an asymmetric trimer of dimers, contrasting the ring-like structure by other ATPases. Notably, the three pairs of PtuA dimers assume distinct conformations and fulfill unique roles in recruiting PtuB. Our functional assays have further illuminated the importance of the oligomeric assembly of PtuAB in anti-phage defense. Moreover, we have uncovered that ATP molecules can directly bind to PtuA and inhibit the activities of PtuAB. Together, the assembly and function of the Septu system shed light on understanding other ATPase-containing systems in bacterial immunity.


Assuntos
Bacteriófagos , Inflamassomos , Microscopia Crioeletrônica , Bacteriófagos/metabolismo , Adenosina Trifosfatases/metabolismo , Escherichia coli/metabolismo
15.
Nat Commun ; 14(1): 3549, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322069

RESUMO

The Holliday junction (HJ) is a DNA intermediate of homologous recombination, involved in many fundamental physiological processes. RuvB, an ATPase motor protein, drives branch migration of the Holliday junction with a mechanism that had yet to be elucidated. Here we report two cryo-EM structures of RuvB, providing a comprehensive understanding of HJ branch migration. RuvB assembles into a spiral staircase, ring-like hexamer, encircling dsDNA. Four protomers of RuvB contact the DNA backbone with a translocation step size of 2 nucleotides. The variation of nucleotide-binding states in RuvB supports a sequential model for ATP hydrolysis and nucleotide recycling, which occur at separate, singular positions. RuvB's asymmetric assembly also explains the 6:4 stoichiometry between the RuvB/RuvA complex, which coordinates HJ migration in bacteria. Taken together, we provide a mechanistic understanding of HJ branch migration facilitated by RuvB, which may be universally shared by prokaryotic and eukaryotic organisms.


Assuntos
DNA Cruciforme , Proteínas de Escherichia coli , DNA Cruciforme/metabolismo , DNA Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , DNA/metabolismo , Nucleotídeos/metabolismo , Catálise
16.
Neuron ; 111(20): 3195-3210.e7, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37543036

RESUMO

OSCA/TMEM63s form mechanically activated (MA) ion channels in plants and animals, respectively. OSCAs and related TMEM16s and transmembrane channel-like (TMC) proteins form homodimers with two pores. Here, we uncover an unanticipated monomeric configuration of TMEM63 proteins. Structures of TMEM63A and TMEM63B (referred to as TMEM63s) revealed a single highly restricted pore. Functional analyses demonstrated that TMEM63s are bona fide mechanosensitive ion channels, characterized by small conductance and high thresholds. TMEM63s possess evolutionary variations in the intracellular linker IL2, which mediates dimerization in OSCAs. Replacement of OSCA1.2 IL2 with TMEM63A IL2 or mutations to key variable residues resulted in monomeric OSCA1.2 and MA currents with significantly higher thresholds. Structural analyses revealed substantial conformational differences in the mechano-sensing domain IL2 and gating helix TM6 between TMEM63s and OSCA1.2. Our studies reveal that mechanosensitivity in OSCA/TMEM63 channels is affected by oligomerization and suggest gating mechanisms that may be shared by OSCA/TMEM63, TMEM16, and TMC channels.


Assuntos
Interleucina-2 , Canais Iônicos , Animais , Interleucina-2/genética , Interleucina-2/metabolismo , Canais Iônicos/metabolismo , Mutação/genética
17.
Cell Calcium ; 101: 102523, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973600

RESUMO

TRPM2 is a calcium permeable non-selective cation channel involved in many important physiological processes and has divergent gating mechanisms across species. Structural studies have revealed that TRPM2 is gated by adenosine 5'-diphosphoribose that binds to the cytosolic domains of TRPM2 and calcium ions that are coordinated by residues in the transmembrane domain. However, the selectivity filter of human TRPM2 remains elusive due to the poor resolution in this region. In a recent manuscript published in Cell Reports, Yu et al. present unexpected dual roles of the selectivity filter in human TRPM2 by determining a high-resolution structure of human TRPM2 in lipid nanodiscs. This study provides unprecedented insights into the gating mechanism of human TRPM2.


Assuntos
Canais de Cátion TRPM , Adenosina Difosfato Ribose , Cálcio/metabolismo , Humanos , Ativação do Canal Iônico , Domínios Proteicos , Canais de Cátion TRPM/metabolismo
18.
Sci Adv ; 8(12): eabm1568, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333573

RESUMO

Human TMEM175, a noncanonical potassium (K+) channel in endolysosomes, contributes to their pH stability and is implicated in the pathogenesis of Parkinson's disease (PD). Structurally, the TMEM175 family exhibits an architecture distinct from canonical potassium channels, as it lacks the typical TVGYG selectivity filter. Here, we show that human TMEM175 not only exhibits pH-dependent structural changes that reduce K+ permeation at acidic pH but also displays proton permeation. TMEM175 constitutively conducts K+ at pH 7.4 but displays reduced K+ permeation at lower pH. In contrast, proton current through TMEM175 increases with decreasing pH because of the increased proton gradient. Molecular dynamics simulation, structure-based mutagenesis, and electrophysiological analysis suggest that K+ ions and protons share the same permeation pathway. The M393T variant of human TMEM175 associated with PD shows reduced function in both K+ and proton permeation. Together, our structural and electrophysiological analysis reveals a mechanism of TMEM175 regulation by pH.

19.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118718, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32289337

RESUMO

Alternative splicing enables G protein-coupled receptor (GPCR) genes to greatly increase the number of structurally and functionally distinct receptor isoforms. However, the functional role and relevance of the individual GPCR splice variants in regulating physiological processes are still to be assessed. A naturally occurring alternative splice variant of Bombyx CAPA-PVK receptor, BomCAPA-PVK-R1-Δ341, has been shown to act as a dominant-negative protein to regulate cell surface expression and function of the canonical CAPA-PVK receptor. Herein, using functional assays, we identify the splice variant Δ341 as a specific receptor for neuropeptide CAPA-PK, and upon activation, Δ341 signals to ERK1/2 pathway. Further characterization demonstrates that Δ341 couples to Gαi/o, distinct from the Gαq-coupled canonical CAPA-PVK receptor, triggering ERK1/2 phosphorylation through Gßγ-PI3K-PKCζ signaling cascade. Moreover, our ELISA data show that the ligand-dependent internalization of the splice variant Δ341 is significantly impaired due to lack of GRKs-mediated phosphorylation sites. Our findings highlight the potential of this knowledge for molecular, pharmacological and physiological studies on GPCR splice variants in the future.


Assuntos
Bombyx/genética , Bombyx/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Splicing de RNA/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Processamento Alternativo , Animais , Clonagem Molecular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva , Sistema de Sinalização das MAP Quinases , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Transdução de Sinais , Transcriptoma
20.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513385

RESUMO

The kisspeptin system is a central modulator of the hypothalamic-pituitary-gonadal axis in vertebrates. Its existence outside the vertebrate lineage remains largely unknown. Here, we report the identification and characterization of the kisspeptin system in the sea cucumber Apostichopus japonicus. The gene encoding the kisspeptin precursor generates two mature neuropeptides, AjKiss1a and AjKiss1b. The receptors for these neuropeptides, AjKissR1 and AjKissR2, are strongly activated by synthetic A. japonicus and vertebrate kisspeptins, triggering a rapid intracellular mobilization of Ca2+, followed by receptor internalization. AjKissR1 and AjKissR2 share similar intracellular signaling pathways via Gαq/PLC/PKC/MAPK cascade, when activated by C-terminal decapeptide. The A. japonicus kisspeptin system functions in multiple tissues that are closely related to seasonal reproduction and metabolism. Overall, our findings uncover for the first time the existence and function of the kisspeptin system in a non-chordate species and provide new evidence to support the ancient origin of intracellular signaling and physiological functions that are mediated by this molecular system.


Assuntos
Kisspeptinas , Receptores de Kisspeptina-1 , Transdução de Sinais , Stichopus , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Kisspeptinas/fisiologia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Stichopus/genética , Stichopus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA