Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Reprod Biol Endocrinol ; 22(1): 80, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997724

RESUMO

BACKGROUND: In recent years, with benefits from the continuous improvement of clinical technology and the advantage of fertility preservation, the application of embryo cryopreservation has been growing rapidly worldwide. However, amidst this growth, concerns about its safety persist. Numerous studies have highlighted the elevated risk of perinatal complications linked to frozen embryo transfer (FET), such as large for gestational age (LGA) and hypertensive disorders during pregnancy. Thus, it is imperative to explore the potential risk of embryo cryopreservation and its related mechanisms. METHODS: Given the strict ethical constraints on clinical samples, we employed mouse models in this study. Three experimental groups were established: the naturally conceived (NC) group, the fresh embryo transfer (Fresh-ET) group, and the FET group. Blastocyst formation rates and implantation rates were calculated post-embryo cryopreservation. The impact of FET on fetal growth was evaluated upon fetal and placental weight. Placental RNA-seq was conducted, encompassing comprehensive analyses of various comparisons (Fresh-ET vs. NC, FET vs. NC, and FET vs. Fresh-ET). RESULTS: Reduced rates of blastocyst formation and implantation were observed post-embryo cryopreservation. Fresh-ET resulted in a significant decrease in fetal weight compared to NC group, whereas FET reversed this decline. RNA-seq analysis indicated that the majority of the expression changes in FET were inherited from Fresh-ET, and alterations solely attributed to embryo cryopreservation were moderate. Unexpectedly, certain genes that showed alterations in Fresh-ET tended to be restored in FET. Further analysis suggested that this regression may underlie the improvement of fetal growth restriction in FET. The expression of imprinted genes was disrupted in both FET and Fresh-ET groups. CONCLUSION: Based on our experimental data on mouse models, the impact of embryo cryopreservation is less pronounced than other in vitro manipulations in Fresh-ET. However, the impairment of the embryonic developmental potential and the gene alterations in placenta still suggested it to be a risky operation.


Assuntos
Criopreservação , Transferência Embrionária , Placenta , Criopreservação/métodos , Feminino , Gravidez , Animais , Camundongos , Transferência Embrionária/métodos , Placenta/metabolismo , Embrião de Mamíferos , Implantação do Embrião/genética , Desenvolvimento Fetal/genética , Blastocisto/metabolismo
2.
Front Endocrinol (Lausanne) ; 15: 1351991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332889

RESUMO

Background: Assisted reproductive technology (ART) has been reported to have negative effects on maternal and neonatal health. Ovulation induction (OI) was reported to be associated with alteration of epigenetic modification of mice embryos, and extinguishing the influence of ovulation induction and in vitro operations on maternal and neonatal health will bring benefits for reducing side effects. The present study aimed to determine whether ovulation induction alone and ART are associated with adverse pregnancy outcomes and whether ART could induce a higher risk than ovulation induction alone. Methods: A total of 51,172 cases with singleton live birth between Jan 2016 and May 2019 at the International Peace Maternal and Child Health Hospital were included in this study. Conception modes documented during registration were classified into natural conception (NC), OI, and ART. Pregnancy outcomes of the three groups with balanced baseline characteristics by propensity score matching were compared. The relative risks of maternal and neonatal outcomes were calculated by logistic regression analysis. Results: Compared with natural conception, infertility treatments are associated with gestational diabetes (OI: OR 1.72, 95% CI 1.31-2.27; ART: OR 1.67, 95% CI 1.26-2.20), preeclampsia/eclampsia (OI: OR 1.86, 95% CI 1.03-3.36; ART: OR 2.23, 95% CI 1.26-3.92). Even if gestational diabetes, gestational hypertension, and placental problems were adjusted, infertility treatments are associated with birth before 37 weeks (OI: OR 1.99, 95% CI 1.28-3.12; ART: OR 1.70, 95% CI 1.08-2.69), low birth weight (OI: OR 2.19, 95% CI 1.23-3.91; ART: OR 1.90, 95% CI 1.05-3.45), and SGA (OI: OR 2.42, 95% CI 1.20-4.87; ART: OR 2.56, 95% CI 1.28-5.11). ART but not OI is associated with a higher risk of birth before 34 weeks (OR:3.12, 95% CI 1.21-8.05). By comparing the OI group with the ART group, we only found that ART could induce a higher ratio of placental problems (5.0%, 26/518 vs 2.1%, 11/519, p<0.05). Conclusion: Both OI and ART are associated with adverse pregnancy outcomes. ART induced comparable negative effects with OI on gestational complications, birth weight, and premature birth (<37 weeks). However, ART resulted in a higher risk of placental problems than group NC and OI. The incidence of birth before 34 weeks of gestation in the ART group tends to be higher than in the OI group, but not statistically significant. The side effects of ART may originate from OI.


Assuntos
Diabetes Gestacional , Infertilidade , Complicações na Gravidez , Humanos , Criança , Gravidez , Feminino , Animais , Camundongos , Resultado da Gravidez/epidemiologia , Estudos Retrospectivos , Pontuação de Propensão , Placenta , Complicações na Gravidez/epidemiologia , Infertilidade/terapia
3.
iScience ; 27(2): 108522, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313057

RESUMO

Small nucleolar RNA host genes (SNHGs) have been implicated in various biological processes, yet their involvement in polycystic ovary syndrome (PCOS) remains elusive. Specifically, SNHG5, a long non-coding RNA implicated in several human cancers, shows elevated expression in granulosa cells (GCs) of PCOS women and induces PCOS-like features when overexpressed in mice. In vitro, SNHG5 inhibits GC proliferation and induces apoptosis and cell-cycle arrest at G0/G1 phase, with RNA-seq indicating its impact on DNA replication and repair pathways. Mechanistically, SNHG5 acts as a competing endogenous RNA by binding to miR-92a-3p, leading to increased expression of target gene CDKN1C, which further suppresses GC proliferation and promotes apoptosis. These findings elucidate the crucial role of SNHG5 in the pathogenesis of PCOS and suggest a potential therapeutic target for this condition. Additional investigations such as large-scale clinical studies and functional assays are warranted to validate and expand upon these findings.

4.
Nutr Diabetes ; 14(1): 56, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043630

RESUMO

BACKGROUND: Maternal diabetes mellitus can influence the development of offspring. Gestational diabetes mellitus (GDM) creates a short-term intrauterine hyperglycaemic environment in offspring, leading to glucose intolerance in later life, but the long-term effects and specific mechanism involved in skeletal muscle dysfunction in offspring remain to be clarified. METHODS: Pregnant mice were divided into two groups: The GDM group was intraperitoneally injected with 100 mg/kg streptozotocin on gestational days (GDs) 6.5 and 12.5, while the control (CTR) group was treated with vehicle buffer. Only pregnant mice whose random blood glucose level was higher than 16.8 mmol/L beginning on GD13.5 were regarded as the GDM group. The growth of the offspring was monitored, and the glucose tolerance test was performed at different time points. Body composition analysis and immunohistochemical methods were used to evaluate the development of lean mass at 8 weeks. The exercise capacity and grip strength of the male mouse offspring were assessed at the same period. Transmission electron microscopy was used to observe the morphology inside skeletal muscle at 8 weeks and as a foetus. The genes and proteins associated with mitochondrial biogenesis and oxidative metabolism were investigated. We also coanalyzed RNA sequencing and proteomics data to explore the underlying mechanism. Chromatin immunoprecipitation and bisulfite-converted DNA methylation detection were performed to evaluate this phenomenon. RESULTS: Short-term intrauterine hyperglycaemia inhibited the growth and reduced the lean mass of male offspring, leading to decreased endurance exercise capacity. The myofiber composition of the tibialis anterior muscle of GDM male offspring became more glycolytic and less oxidative. The morphology and function of mitochondria in the skeletal muscle of GDM male offspring were destroyed, and coanalysis of RNA sequencing and proteomics of foetal skeletal muscle showed that mitochondrial elements and lipid oxidation were consistently impaired. In vivo and in vitro myoblast experiments also demonstrated that high glucose concentrations impeded mitochondrial organisation and function. Importantly, the transcription of genes associated with mitochondrial biogenesis and oxidative metabolism decreased at 8 weeks and during the foetal period. We predicted Ppargc1α as a key upstream regulator with the help of IPA software. The proteins and mRNA levels of Ppargc1α in the skeletal muscle of GDM male offspring were decreased as a foetus (CTR vs. GDM, 1.004 vs. 0.665, p = 0.002), at 6 weeks (1.018 vs. 0.511, p = 0.023) and 8 weeks (1.006 vs. 0.596, p = 0.018). In addition, CREB phosphorylation was inhibited in GDM group, with fewer activated pCREB proteins binding to the CRE element of Ppargc1α (1.042 vs. 0.681, p = 0.037), Pck1 (1.091 vs. 0.432, p = 0.014) and G6pc (1.118 vs. 0.472, p = 0.027), resulting in their decreased transcription. Interestingly, we found that sarcopenia and mitochondrial dysfunction could even be inherited by the next generation. CONCLUSIONS: Short-term intrauterine hyperglycaemia significantly reduced lean mass in male offspring at 8 weeks, resulting in decreased exercise endurance and metabolic disorders. Disrupted organisation and function of the mitochondria in skeletal muscle were also observed among them. Foetal exposure to hyperglycaemia decreased the ratio of phosphorylated CREB and reduced the transcription of Ppargc1α, which inhibited the transcription of downstream genes involving in mitochondrial biogenesis and oxidative metabolism. Abnormal mitochondria, which might be transmitted through aberrant gametes, were also observed in the F2 generation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Diabetes Gestacional , Hiperglicemia , Músculo Esquelético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Efeitos Tardios da Exposição Pré-Natal , Transdução de Sinais , Animais , Feminino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Gravidez , Camundongos , Masculino , Músculo Esquelético/metabolismo , Diabetes Gestacional/metabolismo , Hiperglicemia/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias/metabolismo , Glicemia/metabolismo
5.
Front Cardiovasc Med ; 10: 1250404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116537

RESUMO

Background: To assess the relationship of genetically predicted sexual behavior (age at first sex (AFS) and the number of sexual partners (NSP)) on cardiovascular diseases (CVDs). Methods and results: We performed two-sample Mendelian randomization (MR) with publicly available datasets from the UK Biobank and FinnGen Study, and analyzed genome-wide association results for sexual behaviors and twelve types of CVDs. The univariable MR method provided a total effect of AFS and NSP on CVDs, and showed evidence that early AFS rather than NSP was associated with CVDs, including angina pectoris (AP), atrial fibrillation and flutter (AFF), coronary atherosclerosis (CAS), deep vein thrombosis of the lower extremity (DVT-LE), heart failure (HF), hypertension (HTN), ischaemic stroke (IS), and myocardial infarction (MI). Given sex as a social determinant of CVD risk, we used gender-stratified SNPs to investigate gender differences in the development of CVDs. These results showed a stronger causal relationship of AFS on CVDs in females than in males. Further multivariable MR analyses indicated a direct effect after accounting for insomnia, number of days of vigorous physical activity 10 + minutes (VPA 10 + min), and time spent watching television (TV). Two-step MR demonstrated these three risk factors act as a mediator in AFS associated AP/HTN/HF. Conclusions: We provide evidence that early AFS increased the risk of CVDs. These associations may be partly caused by VPA 10 + min, insomnia, and the time spent on TV. The causality of AFS on CVDs in females was stronger than in males. Conversely, genetically predicted NSP was not associated with CVDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA