Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 651: 172-181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542892

RESUMO

Transition metal borides (TMBs) or phosphides (TMPs) have attracted great attention to the design of bifunctional electrocatalysts for energy storage. The superaerophobicity and superhydrophilicity of the catalytic electrode surface are crucial factors to determine the reaction process of the gas electrode. Herein, we report a self-supported electrode of carbon nanotube (CNTs) array grown on carbon cloth (CC) modulated together by boron-doped cobalt phosphide (CoP-B/CNTs/CC). The electrode requires the overpotential of 73.8 mV and 189.5 mV at the current density of ±10 mA cm-2 for hydrogen and oxygen evolution reactions in an alkaline electrolyte (1.0 M KOH), respectively, meanwhile maintaining outstanding long-term durability for more than 300 h. The excellent activity of CoP-B/CNTs/CC is attributed to boron doping regulating its electronic structure and further enriching active sites. The attractive stability of CoP-B/CNTs/CC is due to the unique geometric structure of the self-supported electrode. Furthermore, the superaerophobicity and superhydrophilicity of the electrode surface also accelerate the reaction process of the gas electrode. Expectedly, water splitting cells assembled using CoP-B/CNTs/CC electrodes as cathode and anode, respectively, require a cell voltage of 1.54 V at 10 mA cm-2, which is lower than that of the Pt/C/CC||RuO2/CC couple (1.69 V at 10 mA cm-2). Importantly, CoP-B/CNTs/CC||CoP-B/CNTs/CC achieve stable cell voltage under the step current changes (10 mA cm-2, 50 mA cm-2, and 100 mA cm-2) over 300 h. This work highlights a new path to understanding the effects of the static and dynamic behavior of bubbles on the surface of self-supporting electrodes on catalytic performance.

2.
ACS Appl Mater Interfaces ; 14(51): 56847-56855, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524830

RESUMO

Electrocatalytic water splitting is a desirable and sustainable strategy for hydrogen production yet still faces challenges due to the sluggish kinetics and rapid deactivation of catalysts in the oxygen evolution process. Herein, we utilized the metal-catalyzed growth technology and phosphating process to fabricate self-supported electrodes (CoxPy@CNT-CC) composed of carbon nanotube (CNT) arrays grown on carbon cloth (CC); thereinto, cobalt-based phosphide nanoparticles (CoxPy) are uniformly encapsulated in the cavity of the CNTs. After further optimization, when the nanoparticles are in the composite phase (CoP2/Co2P), CoP2/Co2P@CNT-CC served as catalytic electrodes with the highest activity and stability for electrocatalytic water splitting in an alkaline medium (1.0 M KOH). The as-prepared CoP2/Co2P@CNT-CC integrates the advantages of the abundant active sites and confinement effect of CNTs, imparting promising electrocatalytic activities and stability in catalyzing both hydrogen evolution reaction and oxygen evolution reaction. Remarkably, electrocatalytic water splitting cells assembled using CoP2/Co2P@CNT-CC electrodes as the cathode and anode, respectively, require a cell voltage of 1.55 V at 10 mA cm-2, which is lower than that of the commercially noble Pt/C/CC and RuO2/CC catalyst couple (1.68 V). Besides, a CoP2/Co2P@CNT-CC||CoP2/Co2P@CNT-CC system shows outstanding durability for a period of 100 h at 10 mA cm-2. This work may provide new ideas for designing bifunctional electrocatalysts for applications in electrocatalytic water splitting.

3.
ACS Nano ; 13(3): 2786-2794, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30702851

RESUMO

Electrolysis of water to generate hydrogen is an important issue for the industrial production of green and sustainable energy. The best electrocatalyst currently available for the hydrogen evolution reaction (HER) is platinum. We herein show that iridium can be manipulated to achieve a record high HER activity surpassing platinum in every aspect: a lower overpotential at any given current density, a higher current density, and mass activity for all bias potentials applied and a catalyst cost reduction of 50% for the same hydrogen generation rate. The superior HER activity was achieved by a binary Ir/Si nanowire catalyst design in which (as density functional theory calculations show) two distinct strategies act in synergy: (i) decreasing the size of the iridium nanoparticles to ∼2.2 nm and (ii) dividing the H2-generation process to three steps occurring on two different catalysts: H adsorption on iridium, H diffusion to silicon, and H2 desorption from silicon.

4.
Nat Commun ; 7: 12272, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27447292

RESUMO

Currently, platinum-based electrocatalysts show the best performance for hydrogen evolution. All hydrogen evolution reaction catalysts should however obey Sabatier's principle, that is, the adsorption energy of hydrogen to the catalyst surface should be neither too high nor too low to balance between hydrogen adsorption and desorption. To overcome the limitation of this principle, here we choose a composite (rhodium/silicon nanowire) catalyst, in which hydrogen adsorption occurs on rhodium with a large adsorption energy while hydrogen evolution occurs on silicon with a small adsorption energy. We show that the composite is stable with better hydrogen evolution activity than rhodium nanoparticles and even exceeding those of commercial platinum/carbon at high overpotentials. The results reveal that silicon plays a key role in the electrocatalysis. This work may thus open the door for the design and fabrication of electrocatalysts for high-efficiency electric energy to hydrogen energy conversion.

5.
Ultrason Sonochem ; 17(1): 21-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19692286

RESUMO

In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd(2)O(3) in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn(3)(PO(4))(2).4H(2)O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd(2)O(3) reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.


Assuntos
Ligas/química , Ligas/efeitos da radiação , Alumínio/química , Alumínio/efeitos da radiação , Fosfatos/química , Fosfatos/efeitos da radiação , Sonicação/métodos , Corrosão , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA