Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 328, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393428

RESUMO

BACKGROUND: WD40 transcription factors are crucial in plant growth and developmental, significantly impacting plant growth regulation. This study investigates the WD40 transcription factor HmWDR68's role in developing the distinctive blue infertile flower colors in Hydrangea macrophylla 'Forever Summer'. METHODS AND RESULTS: The HmWDR68 gene was isolated by PCR, revealing an open reading frame of 1026 base pairs, which encodes 341 amino acids. Characterized by four WD40 motifs, HmWDR68 is a member of the WD40 family. Phylogenetic analysis indicates that HmWDR68 shares high homology with PsWD40 in Camellia sinensis and CsWD40 in Paeonia suffruticosa, both of which are integral in anthocyanin synthesis regulation. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that HmWDR68 expression in the blue infertile flowers of 'Forever Summer' hydrangea was significantly higher compared to other tissues and organs. Additionally, in various hydrangea varieties with differently colored infertile flowers, HmWDR68 expression was markedly elevated in comparison to other hydrangea varieties, correlating with the development of blue infertile flowers. Pearson correlation analysis revealed a significant association between HmWDR68 expression and the concentration of delphinidin 3-O-glucoside, as well as key genes involved in anthocyanin biosynthesis (HmF3H, HmC3'5'H, HmDFR, and HmANS) in the blue infertile flowers of 'Forever Summer' hydrangea (P < 0.01). CONCLUSION: These findings suggest HmWDR68 may specifically regulate blue infertile flower formation in hydrangea by enhancing delphinidin-3-O-glucoside synthesis, modulating expression of HmF3H, HmC3'5'H, HmDFR and HmANS. This study provides insights into HmWDR68's role in hydrangea's blue flowers development, offering a foundation for further research in this field.


Assuntos
Antocianinas , Hydrangea , Antocianinas/genética , Hydrangea/química , Hydrangea/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Pigmentação/genética , Flores/metabolismo , Glucosídeos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Mol Ther ; 31(9): 2734-2754, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415332

RESUMO

Gastrin-releasing peptide (GRP) binds to its receptor (GRP receptor [GRPR]) to regulate multiple biological processes, but the function of GRP/GRPR axis in acute kidney injury (AKI) remains unknown. In the present study, GRPR is highly expressed by tubular epithelial cells (TECs) in patients or mice with AKI, while histone deacetylase 8 may lead to the transcriptional activation of GRPR. Functionally, we uncovered that GRPR was pathogenic in AKI, as genetic deletion of GRPR was able to protect mice from cisplatin- and ischemia-induced AKI. This was further confirmed by specifically deleting the GRPR gene from TECs in GRPRFlox/Flox//KspCre mice. Mechanistically, we uncovered that GRPR was able to interact with Toll-like receptor 4 to activate STAT1 that bound the promoter of MLKL and CCL2 to induce TEC necroptosis, necroinflammation, and macrophages recruitment. This was further confirmed by overexpressing STAT1 to restore renal injury in GRPRFlox/Flox/KspCre mice. Concurrently, STAT1 induced GRP synthesis to enforce the GRP/GRPR/STAT1 positive feedback loop. Importantly, targeting GRPR by lentivirus-packaged small hairpin RNA or by treatment with a novel GRPR antagonist RH-1402 was able to inhibit cisplatin-induced AKI. In conclusion, GRPR is pathogenic in AKI and mediates AKI via the STAT1-dependent mechanism. Thus, targeting GRPR may be a novel therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Animais , Camundongos , Cisplatino/efeitos adversos , Necroptose , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
3.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3320-3329, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-39041095

RESUMO

This study investigates the specific mechanisms of Huaier-induced mitochondrial apoptosis in colorectal cancer. HCT116 and SW480 cells were subjected to Huaier treatment. Cell proliferation and migration capabilities were examined through CCK-8 and scratch experiments, respectively. Apoptotic cells were clarified with Annexin-PE staining. DCFH-DA staining, malondialdehyde(MDA), and glutathione(GSH) were used to evaluate the oxidative stress damage level of cells. MitoSOX and JC-1 probes were used to selectively target mitochondria reactive oxygen species(mtROS) and mitochondria membrane potential(MMP) for the evaluation of mitochondria damage. Western blot(WB) experiment was performed to determine apoptosis proteins and PINK1/Parkin pathway. Experiments reveal that in different concentrations of Huaier treatment, the proliferation and migration capabilities of HCT116 and SW480 cells were both restrained. Additionally, mitochondrial apoptosis was activated. Compared with the control group, excessive ROS in colorectal cancer cells was generated in the Huaier group, while MDA increased, and GSH decreased, indicating oxidative stress damage. mtROS increased, and MMP decreased in colorectal cancer cells treated with Huaier, indicating mitochondrial damage. WB result revealed that Huaier suppressed the PINK1/Parkin pathway, hindered the clearance of impaired mitochondria, and subsequently facilitated apoptosis. In conclusion, Huaier impairs colorectal cancer cells through oxidative stress and mitochondria damage. Furthermore, it suppressed the PINK1/Parkin pathway, promoting mitochondria apoptosis in colorectal cancer cells.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
4.
Inorg Chem ; 62(29): 11618-11625, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37424080

RESUMO

In order to investigate the effects of the secondary coordination sphere in fine-tuning redox potentials (E°') of type 1 blue copper (T1Cu) in cupredoxins, we have introduced M13F, M44F, and G116F mutations both individually and in combination in the secondary coordination sphere of the T1Cu center of azurin (Az) from Pseudomonas aeruginosa. These variants were found to differentially influence the E°' of T1Cu, with M13F Az decreasing E°', M44F Az increasing E°', and G116F Az showing a negligible effect. In addition, combining the M13F and M44F mutations increases E°' by 26 mV relative to WT-Az, which is very close to the combined effect of E°' by each mutation. Furthermore, combining G116F with either M13F or M44F mutation resulted in negative and positive cooperative effects, respectively. Crystal structures of M13F/M44F-Az, M13F/G116F-Az, and M44F/G116F-Az combined with that of G116F-Az reveal these changes arise from steric effects and fine-tuning of hydrogen bond networks around the copper-binding His117 residue. The insights gained from this study would provide another step toward the development of redox-active proteins with tunable redox properties for many biological and biotechnological applications.


Assuntos
Azurina , Azurina/química , Cobre/química , Fenilalanina/química , Modelos Moleculares , Mutação , Oxirredução , Pseudomonas aeruginosa/química
5.
BMC Cardiovasc Disord ; 23(1): 111, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879196

RESUMO

BACKGROUND: Charlson Comorbidity Index (CCI) is positively associated with all-cause readmission in patients with heart failure (HF) in western countries. However, there is a scarcity of strong scientific evidence supporting the correlation in China. This study aimed at testing this hypothesis in Chinese.   METHODS: We conducted a secondary analysis of 1,946 patients with HF in Zigong Fourth People's Hospital in China between December 2016 to June 2019. Logistic regression models were used to study the hypotheses, with adjustments for the four regression models. We also explore the linear trend and possible nonlinear relationship between CCI and readmission within six months. We further conducted subgroup analysis and tests for interaction to examine the possible interaction between CCI and the endpoint. Additionally, CCI alone and several combinations of variables based on CCI were used to predict the endpoint. Under the curve (AUC), sensitivity and specificity were reported to evaluate the performance of the predicted model. RESULTS: In the adjusted II model, CCI was an independent prognostic factor for readmission within six months in patients with HF (OR = 1.14, 95% CI: 1.03-1.26, P = 0.011). Trend tests revealed that there was a significant linear trend for the association. A nonlinear association was identified between them and the inflection point of CCI was 1. Subgroup analyses and tests for interaction indicated that cystatin played an interactive role in the association. ROC analysis indicated neither CCI alone nor combinations of variables based on CCI were adequate for prediction. CONCLUSION: CCI was independently positively correlated with readmission within six months in patients with HF in Chinese population. However, CCI has limited value on predicting readmission within six months in patients with HF.


Assuntos
Insuficiência Cardíaca , Readmissão do Paciente , Humanos , Estudos Retrospectivos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/terapia , China/epidemiologia , Comorbidade
6.
Environ Microbiol ; 24(4): 1838-1848, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170205

RESUMO

Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g. 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologues might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase.


Assuntos
Poluentes Ambientais , Shewanella , Transporte de Elétrons , Elétrons , Poluentes Ambientais/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Shewanella/metabolismo
7.
Bioorg Chem ; 124: 105794, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533545

RESUMO

The side effects of acute Kidney Injury (AKI) and nephrotoxicity limit the application of cisplatin in cancer treatment. Inflammation and oxidative stress paly important role in the pathogenesis of cisplatin-induced AKI. Gastrin-releasing peptide receptor (GRPR) plays an important role in inflammatory response. In this study, we designed 34 new Pd176252 analogs, most synthesized compounds could reduce cisplatin-induced HK2 cell death. Of these compounds, 9b had strong binding affinity with GRPR, and significantly increased HK2 cell viability. Compound 9b significantly downregulated the level of creatinine, blood urea nitrogen (BUN), and malondialdehyde (MDA), and recovered the glutathione (GSH) level in cisplatin-induced AKI model. It also decreased the level of kidney injury molecule-1(KIM-1) in vitro and vivo. In the further pathogenesis studies, 9b downregulated level of inflammatory factors (TNF-α, IL-1ß, IL-6 and MCP-1), suppressed the nuclear factor-kappa B (NF-kB) phosphorylation, and decreased GRPR level. The results suggested that ameliorating cisplatin-induced AKI actions of 9b was involved in downregulation of TNF-α, IL-1ß, IL-6, and MCP-1, inhibition of NF-kB activation, and reduction of GRPR and oxidative stress level.


Assuntos
Injúria Renal Aguda , Cisplatino , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Apoptose , Cisplatino/farmacologia , Glutationa/metabolismo , Humanos , Interleucina-6/metabolismo , Rim , NF-kappa B/metabolismo , Estresse Oxidativo , Receptores da Bombesina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Appl Microbiol Biotechnol ; 106(21): 7337-7345, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36149455

RESUMO

Dosing powdered activated carbon (PAC) has been proven to be an economical and effective method to mitigate membrane fouling. However, the effects of pretreated PAC with different redox properties on membrane fouling still need to be further investigated. Here, the impact of commercial PAC, oxidized-PAC, and reduced-PAC on membrane fouling was investigated in membrane bioreactors (MBRs). Surprisingly, the filtration cycles were extended from 12-36 h to 132-156 h only by dosing reduced-PAC and commercial PAC with a finial dosage of 3 g/L, which were provided with reductive properties. However, few improvements of filtration cycle (less than 50 h) were achieved by dosing oxidized-PAC in the same dosage, which had the same adsorption performance as reduced-PAC and commercial PAC. The biomass and foulant concentration suggested that the enhanced anti-fouling performances by PAC with reductive properties were mainly attributed to the reduction of extracellular polymer substances (EPS) and soluble microbial products (SMP) content in the bulk solutions after 14 days of continuous operation. The model foulant degradation tests and the confocal laser scanning microscope (CLSM) images of activated sludge further demonstrated that PAC with reductive properties directly affected the microbial activities by controlling the EPS and SMP concentrations in the bulk solution, thereby suppressing membrane fouling. Such a finding provides new insights into anti-fouling mechanisms that the redox properties of PAC played a decisive role in membrane fouling mitigation, and also provides a strategy to prolong the anti-fouling effects by restoring the reductive properties of PAC. KEY POINTS: • The anti-fouling mechanisms of PAC with reductive property were investigated. • Reductive property was the main reason for fouling control instead of adsorption. • PAC with reductive property hindered the sludge activity to produce fewer foulants.


Assuntos
Incrustação Biológica , Carvão Vegetal , Esgotos , Incrustação Biológica/prevenção & controle , Pós , Membranas Artificiais , Reatores Biológicos , Polímeros
9.
BMC Nephrol ; 23(1): 52, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109818

RESUMO

BACKGROUND: Albumin (ALB) levels are negatively associated with mortality in patients with sepsis. However, among sepsis patients with acute kidney injury (AKI) undergoing continuous renal replacement therapy (CRRT), there has been no similar study on the correlation between ALB levels and mortality alone. This study tested the hypothesis that ALB levels are negatively associated with mortality among such patients. METHODS: We conducted a secondary analysis of 794 septic patients who were diagnosed with AKI and underwent CRRT in South Korea. For the Kaplan-Meier survival analysis, Cox proportional hazards models were used to study the hypotheses, with adjustments for the pertinent covariables. We also explore the possible nonlinear relationship and conducted sensitivity analyses including subgroup analyses and tests for interactions to investigate the association further. Additionally, ALB was used to construct model and we then compared the performance of ALB with that of APACHE II and SOFA in predicting mortality. RESULTS: The ALB level was an independent prognostic factor for death at 28 and 90 days after CRRT initiation (HR = 0.75, 95% CI: 0.62-0.90, P = 0.0024 for death at 28 days and HR = 0.73, 95% CI: 0.63-0.86, P < 0.0001 for death at 90 days). A nonlinear association was not identified between ALB levels and the endpoints. Subgroup analyses and tests for interactions indicated that HCO3 and CRP played an interactive role in the association. ROC analysis indicated ALB, SOFA and APACHE-II were separately inadequate for clinical applications. CONCLUSION: A 1 g/dL increase in ALB levels was independently associated with a 25 and 27% decrease in the risk of death at 28 and 90 days, respectively. However, this conclusion needs to be taken with caution as this study has several limitations.


Assuntos
Injúria Renal Aguda/sangue , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/terapia , Terapia de Substituição Renal Contínua , Sepse/sangue , Sepse/mortalidade , Albumina Sérica/análise , Injúria Renal Aguda/complicações , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Sepse/complicações , Análise de Sobrevida
10.
Mol Cell Biochem ; 476(1): 187-197, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32926297

RESUMO

Heat shock protein B8 (HSPB8) impacts on tumor proliferation and migration of malignancy. However, the role of HSPB8 in lung adenocarcinoma (LUAC) remains unclear. The aim of this study, therefore, was to clarify whether HSPB8 could bring benefits to proliferation and migration of LUAC and its underlying mechanisms. The expression of HSPB8 was first evaluated by immunohistochemistry in 35 LUAC samples. Then, A549 lung adenocarcinoma cells were transfected with pcDNA-HSPB8 or si-HSPB8 to induce HSPB8 overexpression and silence. Cellular activity was evaluated with a Cell Counting Kit-8 (CCK-8) assay. Cell proliferation and migration were observed by EdU assay and scratch assay. Mitochondria-specific reactive oxygen species (mtROS) and membrane potential were measured using MitoSOX Red probe and JC-1 staining. Superoxide dismutase (SOD) activities and malondialdehyde (MDA) level were measured using commercial kits, respectively. HSPB8 protein, mitochondrial fusion protein MFN2 and mitochondrial fission protein p-Drp1/Drp1 were measured using western blot. Compared with the normal tissues, the expression of HSPB8 protein was higher in LUAC tissues and upregulation of HSPB8 protein was related to tumor size and tumor location. Furthermore, HSPB8 overexpression aggravated cell proliferation and migration of A549 cells. Mechanistically, HSPB8 suppressed mitochondrial impairment, leading to promoting the progress of A549 lung adenocarcinoma cells. These data demonstrate that HSPB8 plays an important role in progression of LUAC and may be a new target to treat LUAC.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Movimento Celular , Proliferação de Células , Proteínas de Choque Térmico/metabolismo , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Células A549 , Adenocarcinoma de Pulmão/patologia , Idoso , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase
11.
Physiol Plant ; 171(1): 137-150, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32997341

RESUMO

Many plants grown with low-millimolar concentration of NH4 + as a sole nitrogen source develop NH4 + -toxicity symptoms. To date, crucial molecular identities and a practical approach involved in the improvement of plant NH4 + -tolerance remain largely unknown. By phenotyping of upland cotton grown on varied nitrogen forms, we came across a phenomenon that caused sub-millimolar concentrations of urea (e.g., up 50 µM) to repress the growth inhibition of roots and whole plant cultivated in a NH4 + -containing nutrient solution. A growth-recovery assay revealed that the relief in NH4 + -inhibited growth required only a short-term exposure (≧12 h) of the roots to urea, implying that urea could elicit an internal signaling and be involved in antagonizing NH4 + -sensitivity. Intriguingly, split-root experiments demonstrated that low urea occurrence in one root-half could efficaciously stimulate not only supplied root but also the root-half grown in NH4 + -solution without urea, indicating the existence of urea-triggered local and systemic long-distance signaling. In the split-root experiment we also observed high arginase activity, strong arginine reduction and remarkable upregulation of polyamine biosynthesis-related genes (ADC1/2, SPDS and SPMS). Therefore, we suggest that external urea might serve as an effective cue (signal molecule) in an arginine-/polyamine-related process for ameliorating NH4 + -suppressed root growth, providing a novel aspect for deeper exploring and understanding plant NH4 + -tolerance.


Assuntos
Compostos de Amônio , Sinais (Psicologia) , Gossypium , Nitrogênio , Raízes de Plantas , Ureia/farmacologia
12.
Environ Sci Technol ; 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319703

RESUMO

The biogeochemical cycle of iron is of great importance to living organisms on Earth, and dissimilatory metal-reducing bacteria (DMRB) with the capability of reducing hematite (α-Fe2O3) by outer-membrane (OM) cytochromes play a great role in the iron cycle. However, the dynamic binding of cytochromes to α-Fe2O3 at the molecular level and the resulting impact on the photon-to-electron conversion of α-Fe2O3 for the iron cycle are not fully understood. To address these issues, two-dimensional IR correlation analysis coupled with molecular dynamics (MD) simulations was conducted for an OmcA-Fe2O3 system as OmcA bonds stronger with hematite in a typical DMRB,Shewanella. The photoelectric response of α-Fe2O3 with the OmcA coating was evaluated at three different potentials. Specifically, the binding groups from OmcA to α-Fe2O3 were in the sequence of carboxyl groups, amide II, and amide I. Further MD analysis reveals that both electrostatic interactions and hydrogen bonds played essential roles in the binding process, leading to the structural changes of OmcA to facilitate iron reduction. Moreover, the OmcA coating could store the photogenerated electrons from α-Fe2O3 like a capacitor and utilize the stored electrons for α-Fe2O3 reduction in dark and anoxic environments, further driving the biogeochemical cycle of iron. These investigations give the dynamic information on the OM protein/hematite interaction and provide fundamental insights into the biogeochemical cycle of iron by taking the photon-induced redox chemistry of iron oxide into consideration.

13.
Inorg Chem ; 59(15): 10620-10627, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32689800

RESUMO

Type 1 copper (T1Cu) proteins play important roles in electron transfer in biology, largely due to the unique structure of the T1Cu center, which is reflected by its spectroscopic properties. Previous reports have suggested a correlation between a high ratio of electronic absorbance at ∼450 nm to that at ∼600 nm (R = A450/A600) and a large copper(II) hyperfine coupling in the z direction (Az) in electron paramagnetic resonance (EPR). However, this correlation does not have a clear physical meaning, nor does it hold for many proteins with a perturbed T1Cu center. To address this issue, a new parameter of R' [A450/(A450 + A600)] with a better physical meaning of a fractional SCys pseudo-σ to Cu(II) charge transfer transition intensity is defined and a quadratic relationship between R' and Az is found on the basis of a comprehensive analysis of ultraviolet-visible absorption, EPR, and structural parameters of T1Cu proteins. We are able to find good correlations between R' and the displacement of copper from the trigonal plane defined by the His2Cys ligands and the angle between the NHis1-Cu-NHis2 plane and the SCys-Cu-axial ligand plane, providing a structural basis for the observed correlation. These findings and analyses provide a new framework for a deeper understanding of the spectroscopic and electronic properties of T1Cu proteins, which may allow better design and applications of this important class of proteins for redox and electron transfer functions.


Assuntos
Azurina/química , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Eletrônica , Oxirredução , Conformação Proteica
14.
Physiol Plant ; 167(2): 217-231, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30467856

RESUMO

Ammonium (NH4 + ) represents a primary nitrogen source for many plants, its effective transport into and between tissues and further assimilation in cells determine greatly plant nitrogen use efficiency. However, biological components involved in NH4 + movement in woody plants are unclear. Here, we report kinetic evidence for cotton NH4 + uptake and molecular identification of certain NH4 + transporters (AMTs) from cotton (Gossypium hirustum). A substrate-influx assay using 15 N-isotope revealed that cotton possessed a high-affinity transport system with a Km of 58 µM for NH4 + . Sequence analysis showed that GhAMT1.1-1.3 encoded respectively a membrane protein containing 485, 509 or 499 amino acids. Heterologous functionality test demonstrated that GhAMT1.1-1.3 expression mediated NH4 + permeation across the plasma membrane (PM) of yeast and/or Arabidopsis qko-mutant cells, allowing a growth restoration of both mutants on NH4 + . Quantitative PCR measurement showed that GhAMT1.3 was expressed in roots and leaves and markedly up-regulated by N-starvation, repressed by NH4 + resupply and regulated diurnally and age-dependently, suggesting that GhAMT1.3 should be a N-responsive gene. Importantly, GhAMT1.3 expression in Arabidopsis improved plant growth on NH4 + and enhanced total nitrogen accumulation (∼50% more), conforming with the observation of 2-fold more NH4 + absorption by GhAMT1.3-transformed qko plant roots during a 1-h root influx period. Together with its targeting to the PM and saturated transport kinetics with a Km of 72 µM for NH4 + , GhAMT1.3 is suggested to be a high-affinity NH4 + permease that may play a significant role in cotton NH4 + acquisition and utilization, adding a new member in the plant AMT family.


Assuntos
Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Gossypium/genética , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Gossypium/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 44(22): 4820-4829, 2019 Nov.
Artigo em Zh | MEDLINE | ID: mdl-31872588

RESUMO

Agkistrodon acutus is a traditional Chinese herb medicine which has immunological regulation,anti-tumor,anti-inflammatory and analgesic effects,which is mainly used for the treatment of rheumatoid arthritis,ankylosing spondylitis,sjogren's syndrome and tumors. In order to excavate more important functional genes from A. acutus,the transcriptome of the venom gland was sequenced by the Illumina Hi Seq 4000,and 32 862 unigenes were assembled. Among them,26 589 unigenes were mapped to least one public database. 2 695 unigenes were annotated and assigned to 62 TF families,and 5 920 SSR loci were identified. The majority of mapped unigenes was from Protobothrops mucrosquamatus in the NR database,which revealed their closest homology. Three secretory phospholipase A_2 with different amino acid sequences showed similar spatial structures and all had well-conserved active sites. The 3 D structural models of C-type lectin showed conserved glycosylation binding sites( Asn45). This study will lay the foundation for the further study of the function of snake venom protein,and promoting the development and utilization of genome resources from A. acutus.


Assuntos
Agkistrodon/genética , Venenos de Crotalídeos , Venenos de Serpentes/genética , Animais , Perfilação da Expressão Gênica , Serpentes , Transcriptoma
16.
Inflamm Res ; 67(8): 681-690, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29786779

RESUMO

AIM AND OBJECTIVE: Regulation of microRNA gene expression by DNA methylation may represent a key mechanism to drive cardiac fibrosis progression. Cardiac fibroblast autophagy is the primary source of cardiac fibrosis, but the mechanisms underlying this process are incompletely understood. Here we found that DNMT3A suppression of the microRNA-200b (miR-200b) through pathway leads to cardiac fibroblast autophagy in cardiac fibrosis. METHODS: To understand the impact of DNMT3A on miR-200b at cardiac fibrosis, the rat cardiac fibrosis model was established via the abdominal aortic coarctation. Cardiac fibroblasts (CFs) were harvested from SD neonate rats and cultured. The expression of DNMT3A, miR-200b, collagen I was measured by western blotting, immunohistochemistry and qRT-PCR. Gain- or loss-of-function approaches were used to manipulate DNMT3A and miR-200b. RESULTS: DNMT3A level was upregulated and negatively correlated with miR-200b expression in fibrosis tissues and cardiac fibroblast. We found that autophagy was activated by miR-200b inhibitor and inactivated by miR-200b mimic in the rat cardiac fibroblast. Knockdown of DNMT3A notably increased the expression of miR-200b. CONCLUSIONS: Taken together, these findings indicate that DNMT3A regulation of miR-200b controls cardiac fibroblast autophagy during cardiac fibrosis and provide a basis for the development of therapies for cardiac fibrosis.


Assuntos
Autofagia/genética , DNA (Citosina-5-)-Metiltransferases/genética , MicroRNAs/genética , Miocárdio/patologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , DNA Metiltransferase 3A , Fibroblastos/metabolismo , Fibrose , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Miocárdio/metabolismo , Ratos Sprague-Dawley , Sirolimo
17.
Yi Chuan ; 40(7): 561-571, 2018 Jul 20.
Artigo em Zh | MEDLINE | ID: mdl-30021719

RESUMO

CRISPR/Cas technology enables efficient and specific editing the genome. Since different bacterial sources or artificially modified Cas9, as well as Cpf1 and other nucleases, recognize different PAMs (protospacer adjacent motifs), different gene editing nucleases may use different types of sgRNAs (small guide RNA). MicroRNAs (miRNAs) are a class of regulatory small non-coding RNAs. To determine whether specific targets for sgRNAs in miRNA precursor exit, the abundance and specificity of 11 different types of sgRNA targeting 28 645 miRNA precursors were analyzed in the present study using the CRISPR-offinder, a bioinformatics software developed in our own laboratory. The CRISPR/Cas9 lentivirus technology was used to target the miR-302/367 cluster in a porcine cell line, and its knockout efficiency for the miRNA target was evaluated. The results show that there are about 8 different types of sgRNAs that can target individual miRNA precursors. By assessing the off-target effect, only 18.2% of the sgRNAs showed high specificity for targeting the porcine miRNA precursors. Lastly, using the miR-302/367 cluster target as an example, we showed that the CRISPR/Cas9 lentivirus technology was 40% efficient in successfully establishing correct knockout of the target miRNA in the porcine cell line. This present study provides an important resource for the use of CRISPR/Cas technology to target miRNAs for knockout studies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , MicroRNAs/genética , RNA Guia de Cinetoplastídeos/genética , Animais , Técnicas de Inativação de Genes , Suínos
18.
Reproduction ; 154(3): 169-179, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630098

RESUMO

MicroRNAs (miRNAs) are 18-24 nucleotides non-coding RNAs that regulate gene expression by post-transcriptional suppression of mRNA. The Chinese giant salamander (CGS, Andrias davidianus), which is an endangered species, has become one of the important models of animal evolution; however, no miRNA studies on this species have been conducted. In this study, two small RNA libraries of CGS ovary and testis were constructed using deep sequencing technology. A bioinformatics pipeline was developed to distinguish miRNA sequences from other classes of small RNAs represented in the sequencing data. We found that many miRNAs and other small RNAs such as piRNA and tsRNA were abundant in CGS tissue. A total of 757 and 756 unique miRNAs were annotated as miRNA candidates in the ovary and testis respectively. We identified 145 miRNAs in CGS ovary and 155 miRNAs in CGS testis that were homologous to those in Xenopus laevis ovary and testis respectively. Forty-five miRNAs were more highly expressed in ovary than in testis and 21 miRNAs were more highly expressed in testis than in ovary. The expression profiles of the selected miRNAs (miR-451, miR-10c, miR-101, miR-202, miR-7a and miR-499) had their own different roles in other eight tissues and different development stages of testis and ovary, suggesting that these miRNAs play vital regulatory roles in sexual differentiation, gametogenesis and development in CGS. To our knowledge, this is the first study to reveal miRNA profiles that are related to male and female CGS gonads and provide insights into sex differences in miRNA expression in CGS.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Ovário/metabolismo , Testículo/metabolismo , Urodelos/genética , Animais , Biologia Computacional , Feminino , Masculino , Ovário/citologia , Testículo/citologia , Urodelos/classificação
19.
Phys Chem Chem Phys ; 19(48): 32580-32588, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29189841

RESUMO

Extracellular electron transfer (EET) occurs from outer-membrane proteins to electron acceptors. Heme(ii) is the active center of outer-membrane proteins and delivers electrons to acceptors or mediators such as riboflavin, a redox active chromophore present in organisms. However, the EET mechanism via mediators, especially the electron transfer process from outer-membrane proteins to mediators, has not been well documented yet. In this work, the mechanism behind the electron transfer from heme(ii) to riboflavin is investigated by using in situ ultraviolet visible and fluorescence spectroelectrochemical analysis, which provides the information regarding the structural change and electrochemical characteristics of species in the electron transfer process. It is found that hemin(iii), the oxidized form of heme(ii), is electrolyzed to an intermediate "hemx(ii)" without structural changes, and is then transformed to heme(ii) by conjugating with riboflavin and its radicals. Heme(ii) is able to activate riboflavin reduction via a two-electron two-proton pathway in aqueous solution. The mechanisms proposed on the basis of experimental results are further confirmed by density functional theory calculations. The results about the electron transfer from hemx(ii) (or heme(ii)) to riboflavin are useful not only for understanding the EET mechanisms, but also for maximizing the role of riboflavin in biogeochemical cycling and environmental bioremediation.

20.
Tumour Biol ; 37(4): 4929-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26526583

RESUMO

The presence of cancer stem cells (CSCs) is the source of occurrence, aggravation, and recurrence of lung cancer. Accordingly, targeting killing the lung CSCs has been suggested to be an effective approach for lung cancer treatment. In this study, we showed that rapamycin inhibited the mammalian target of rapamycin (mTOR) signal transduction in A549 cells and improved the sensitivity to cisplatin (DDP). The mechanisms involve inhibition of the SOX2 expression, cell proliferation, epithelial-mesenchymal transition (EMT) phenotype, and sphere formation. Interestingly, knocked down SOX2 was a similar effect with rapamycin in A549 sphere. Furthermore, we showed that ectopic expression of Sox2 in A549 cells was sufficient to render them more resistant to rapamycin treatment in vitro. These data suggested that rapamycin inhibited the function of lung CSCs via SOX2. It will be of great interest to further explore the therapeutic strategies of lung cancer.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Fatores de Transcrição SOXB1/genética , Sirolimo/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA