Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5953, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642325

RESUMO

Triggered by the pioneering research on graphene, the family of two-dimensional layered materials (2DLMs) has been investigated for more than a decade, and appealing functionalities have been demonstrated. However, there are still challenges inhibiting high-quality growth and circuit-level integration, and results from previous studies are still far from complying with industrial standards. Here, we overcome these challenges by utilizing machine-learning (ML) algorithms to evaluate key process parameters that impact the electrical characteristics of MoS2 top-gated field-effect transistors (FETs). The wafer-scale fabrication processes are then guided by ML combined with grid searching to co-optimize device performance, including mobility, threshold voltage and subthreshold swing. A 62-level SPICE modeling was implemented for MoS2 FETs and further used to construct functional digital, analog, and photodetection circuits. Finally, we present wafer-scale test FET arrays and a 4-bit full adder employing industry-standard design flows and processes. Taken together, these results experimentally validate the application potential of ML-assisted fabrication optimization for beyond-silicon electronic materials.

2.
ACS Appl Mater Interfaces ; 11(46): 43330-43336, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31659890

RESUMO

Two-dimensional heterojunctions exhibit many unique features in nanoelectronic and optoelectronic devices. However, heterojunction engineering requires a complicated alignment process and some defects are inevitably introduced during material preparation. In this work, a laser scanning technique is used to construct a lateral WSe2 p-n junction. The laser-scanned region shows p-type behavior, and the adjacent region is electrically n-doped with a proper gate voltage. The laser-oxidized product WOx is found to be responsible for this p-type doping. After laser scanning, WSe2 displays a change from ambipolar to unipolar p-type property. A significant photocurrent emerges at the p-n junction. Therefore, a self-powered WSe2 photodetector can be fabricated based on this junction, which presents a large photoswitching ratio of 106, a high photoresponsivity of 800 mA W-1, and a short photoresponse time with long-term stability and reproducibility. Therefore, this selective laser-doping method is prospective in future electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA