Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(21): 217002, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809164

RESUMO

We report first-principles and strongly correlated calculations of the newly discovered heavy fermion superconductor UTe_{2}. Our analyses reveal three key aspects of its magnetic, electronic, and superconducting properties that include (i) a two-leg ladder-type structure with strong magnetic frustrations, which might explain the absence of long-range orders and the observed magnetic and transport anisotropy, (ii) quasi-two-dimensional Fermi surfaces composed of two separate electron and hole cylinders with similar nesting properties as in UGe_{2}, which may potentially promote magnetic fluctuations and help to enhance the spin-triplet pairing, and (iii) a unitary spin-triplet pairing state of strong spin-orbit coupling at zero field, with point nodes presumably on the heavier hole Fermi surface along the k_{x} direction, in contrast to the previous belief of nonunitary pairing. Our proposed scenario is in excellent agreement with latest thermal conductivity measurement and provides a basis for understanding the peculiar magnetic and superconducting properties of UTe_{2}.

2.
Front Oncol ; 11: 650534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996568

RESUMO

Glioma is the most common primary intracranial malignant tumor in adults. Although there have been many efforts on potential targeted therapy of glioma, the patient's prognosis remains dismal. Methyltransferase Like 7B (METTL7B) has been found to affect the development of a variety of tumors. In this study, we collected RNA-seq data of glioma in CGGA and TCGA, analyzed them separately. Then, Kaplan-Meier survival analysis, univariate and multivariate Cox analysis, and receiver operating characteristic curve (ROC curve) analysis were used to evaluate the effect of METTL7B on prognosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) enrichment analyses were used to identify the function or pathway associated with METTL7B. Moreover, the ESTIMATE algorithm, Cibersort algorithm, Spearman correlation analysis, and TIMER database were used to explore the relationship between METTL7B and immunity. Finally, the role of METTL7B was explored in glioma cells. We found that METTL7B is highly expressed in glioma, and high expression of METTL7B in glioma is associated with poor prognosis. In addition, there were significant differences in immune scores and immune cell infiltration between the two groups with different expression levels of METTL7B. Moreover, METTL7B was also correlated with immune checkpoints. Knockdown of METTL7B revealed that METTL7B promoted the progression of glioma cells. The above results indicate that METTL7B affects the prognosis of patients and is related to tumor immunity, speculating that METTL7B may be a new immune-related target for the treatment of glioma.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37964898

RESUMO

Magnetic fluctuations is the leading candidate for pairing in cuprate, iron-based, and heavy fermion superconductors. This view is challenged by the recent discovery of nodeless superconductivity in CeCu2Si2, and calls for a detailed understanding of the corresponding magnetic fluctuations. Here, we mapped out the magnetic excitations in superconducting (S-type) CeCu2Si2 using inelastic neutron scattering, finding a strongly asymmetric dispersion for E≲1.5meV, which at higher energies evolves into broad columnar magnetic excitations that extend to E≳5meV. While low-energy magnetic excitations exhibit marked three-dimensional characteristics, the high-energy magnetic excitations in CeCu2Si2 are almost two-dimensional, reminiscent of paramagnons found in cuprate and iron-based superconductors. By comparing our experimental findings with calculations in the random-phase approximation,we find that the magnetic excitations in CeCu2Si2 arise from quasiparticles associated with its heavy electron band, which are also responsible for superconductivity. Our results provide a basis for understanding magnetism and superconductivity in CeCu2Si2, and demonstrate the utility of neutron scattering in probing band renormalization in heavy fermion metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA