Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Adv Exp Med Biol ; 1452: 65-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38805125

RESUMO

Epithelial ovarian cancer (EOC) is a complex disease with diverse histological subtypes, which, based on the aggressiveness and course of disease progression, have recently been broadly grouped into type I (low-grade serous, endometrioid, clear cell, and mucinous) and type II (high-grade serous, high-grade endometrioid, and undifferentiated carcinomas) categories. Despite substantial differences in pathogenesis, genetics, prognosis, and treatment response, clinical diagnosis and management of EOC remain similar across the subtypes. Debulking surgery combined with platinum-taxol-based chemotherapy serves as the initial treatment for High Grade Serous Ovarian Carcinoma (HGSOC), the most prevalent one, and for other subtypes, but most patients exhibit intrinsic or acquired resistance and recur in short duration. Targeted therapies, such as anti-angiogenics (e.g., bevacizumab) and PARP inhibitors (for BRCA-mutated cancers), offer some success, but therapy resistance, through various mechanisms, poses a significant challenge. This comprehensive chapter delves into emerging strategies to address these challenges, highlighting factors like aberrant miRNAs, metabolism, apoptosis evasion, cancer stem cells, and autophagy, which play pivotal roles in mediating resistance and disease relapse in EOC. Beyond standard treatments, the focus of this study extends to alternate targeted agents, including immunotherapies like checkpoint inhibitors, CAR T cells, and vaccines, as well as inhibitors targeting key oncogenic pathways in EOC. Additionally, this chapter covers disease classification, diagnosis, resistance pathways, standard treatments, and clinical data on various emerging approaches, and advocates for a nuanced and personalized approach tailored to individual subtypes and resistance mechanisms, aiming to enhance therapeutic outcomes across the spectrum of EOC subtypes.


Assuntos
Carcinoma Epitelial do Ovário , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/terapia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Antineoplásicos/uso terapêutico , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos
2.
Diagnostics (Basel) ; 13(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832201

RESUMO

Epithelial ovarian cancer (EOC) is the deadliest gynaecological malignancy and the eighth most prevalent cancer in women, with an abysmal mortality rate of two million worldwide. The existence of multiple overlapping symptoms with other gastrointestinal, genitourinary, and gynaecological maladies often leads to late-stage diagnosis and extensive extra-ovarian metastasis. Due to the absence of any clear early-stage symptoms, current tools only aid in the diagnosis of advanced-stage patients, wherein the 5-year survival plummets further to less than 30%. Therefore, there is a dire need for the identification of novel approaches that not only allow early diagnosis of the disease but also have a greater prognostic value. Toward this, biomarkers provide a gamut of powerful and dynamic tools to allow the identification of a spectrum of different malignancies. Both serum cancer antigen 125 (CA-125) and human epididymis 4 (HE4) are currently being used in clinics not only for EOC but also peritoneal and GI tract cancers. Screening of multiple biomarkers is gradually emerging as a beneficial strategy for early-stage diagnosis, proving instrumental in administration of first-line chemotherapy. These novel biomarkers seem to exhibit an enhanced potential as a diagnostic tool. This review summarizes existing knowledge of the ever-growing field of biomarker identification along with potential future ones, especially for ovarian cancer.

3.
Bio Protoc ; 12(3): e4310, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35284594

RESUMO

Chemoresistance, the ability of cancer cells to overcome therapeutic interventions, is an area of active research. Studies on intrinsic and acquired chemoresistance have partly succeeded in elucidating some of the molecular mechanisms in this elusive phenomenon. Hence, drug-resistant cellular models are routinely developed and used to mimic the clinical scenario in-vitro. In an attempt to identify the underlying molecular mechanisms that allow ovarian cancer cells to gradually acquire chemoresistance, we have developed isogenic cellular models of cisplatin and paclitaxel resistance (singularly and in combination) over six months, using a clinically relevant modified pulse method. These models serve as important tools to investigate the underlying molecular players, modulation in genetics, epigenetics, and relevant signaling pathways, as well as to understand the role of drug detoxification and drug influx-efflux pathways in development of resistance. These models can also be used as screening tools for new therapeutic molecules. Additionally, repurposing therapeutic agents approved for diseases other than cancer have gained significant attention in improving cancer therapy. To investigate the effect of metformin on acquirement of chemoresistance, we have also developed a combinatorial model of metformin and platinum-taxol, using two different strategies. All these models were subsequently used to study modulation in receptor tyrosine kinase pathways, cancer stem cell functionalities, autophagy, metastasis, metabolic signatures, and various biological processes during development of chemoresistance. Herein, we outline the protocols used for developing these intricate resistant cellular models.

4.
Am J Pathol ; 166(1): 135-46, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15632007

RESUMO

The mechanism of nasal-associated lymphoid tissue (NALT) development is incompletely understood with regard to the roles of cytokines, chemokines, and vascular addressins. Development of the wild-type NALT continued in the immediate postnatal period with gradual increases in cellularity, compartmentalization into T- and B-cell zones, and expression of lymphotoxin (LT)-alpha, LT-beta, and lymphoid chemokines (CCL21, CCL19, CXCL13). High endothelial venules (HEVs) developed that expressed GlyCAM-1, HEC-6ST [an enzyme crucial for expression of luminal peripheral node addressin (PNAd)], and PNAd itself. LT-beta(-/-) and LT-alpha(-/-) NALTs had fewer cells than those of wild-type mice, reduced (LT-beta(-/-)) or absent (LT-alpha(-/-)) lymphoid chemokines, and no T- and B-cell compartmentalization. LT-beta(-/-) HEVs expressed only abluminal PNAd and no HEC-6ST or GlyCAM-1. LT-alpha(-/-) HEVs had no PNAd, HEC-6ST, or GlyCAM-1. Because intranasal immunization gives rise to vaginal IgA, immunization of LT-beta(-/-) mice, which retain cervical lymph nodes, might generate such a response. Intranasal immunization with ovalbumin and cholera toxin revealed lower cytokine levels in the LT-alpha(-/-) and LT-beta(-/-) NALTs, and undetectable vaginal IgA. In contrast, splenic cytokines and serum IgG titers, although reduced, were detectable. These data indicate that LT-alpha(3) and LT-alpha(1)beta(2) cooperatively contribute to NALT development and function through regulation of lymphoid chemokines and adhesion molecules; they are the first to implicate LT-alpha(1)beta(2) in GlyCAM-1 regulation in NALT HEV development.


Assuntos
Antígenos de Superfície/fisiologia , Quimiocinas/genética , Tecido Linfoide/imunologia , Linfotoxina-alfa/fisiologia , Mucosa Nasal/fisiologia , Animais , Linfócitos B/imunologia , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Linfotoxina-alfa/deficiência , Linfotoxina-alfa/genética , Linfotoxina-beta , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Linfócitos T/imunologia , Vênulas/imunologia , Vênulas/fisiologia
5.
Am J Pathol ; 164(5): 1635-44, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111310

RESUMO

The interaction of L-selectin on lymphocytes with sulfated ligands on high endothelial venules (HEVs) of lymph nodes results in lymphocyte rolling and is essential for lymphocyte homing. The MECA-79 monoclonal antibody reports HEV-expressed ligands for L-selectin by recognizing a critical sulfation-dependent determinant on these ligands. HEC-GlcNAc6ST, a HEV-localized sulfotransferase, is essential for the elaboration of functional ligands within lymph nodes, as well as the generation of the MECA-79 epitope. Here, we use an antibody against murine HEC-GlcNAc6ST to study its expression in relationship to the MECA-79 epitope. In lymph nodes, the enzyme is expressed in the Golgi apparatus of high endothelial cells, in close correspondence with luminal staining by MECA-79. In lymph node HEVs of HEC-GlcNAc6ST-null mice, luminal staining by MECA-79 is almost abolished, whereas abluminal staining persists although reduced in intensity. HEV-like vessels in several examples of inflammation-associated lymphoid neogenesis, including nonobese diabetic mice, also exhibit concomitant expression of the sulfotransferase and luminal MECA-79 reactivity. The correlation extends to ectopic lymphoid aggregates within the pancreas of RIP-BLC mice, in which CXCL13 is expressed in islets. Analysis of the progeny of RIP-BLC by HEC-GlcNAc6ST-null mice establishes that the enzyme is responsible for the MECA-79 defined luminal ligands.


Assuntos
Antígenos de Superfície/química , Moléculas de Adesão Celular , Endotélio/enzimologia , Linfonodos/enzimologia , Sulfotransferases/biossíntese , Animais , Antígenos de Superfície/metabolismo , Western Blotting , DNA Complementar/metabolismo , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Ligantes , Linfonodos/patologia , Linfócitos/enzimologia , Proteínas de Membrana , Camundongos , Microscopia de Fluorescência , Mucoproteínas , Carboidrato Sulfotransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA