Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Anim Ecol ; 92(3): 690-697, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597705

RESUMO

Predation risk effects are impacts on prey caused by predators that do not include consumption. These can include changes in prey behaviour, physiology, and morphology (i.e. risk-induced trait responses), which can have consequences to individual fitness and population dynamics (i.e. non-consumptive effects). While these risk-induced trait responses (RITRs) can lower individual fitness as compared to prey not exposed to risk, they are assumed to increase fitness in the presence of predators. While much work has been built upon this assumption, most evidence occurs in consumptive experiments where the trait values of consumed prey are unknown. We have little evidence showing individuals with a greater magnitude of RITR have greater survival. Here, we tested the hypothesis that RITRs increase survival in the presence of predators, but come at a cost to growth. We tested this hypothesis using Nucella lapillus as prey and Carcinus maenas as a predator and including mussels as a basal resource in a two-phase mesocosm experimental set-up. In phase 1, Nucella were placed into either a control or risk treatment (exposure to non-lethal Carcinus) for 28 days and their behaviour and growth measured. In phase 2, a lethal Carcinus was added to all mesocosms (non-lethal crabs were removed), and survival was recorded for 15 days. At the treatment (group) level, we found that Nucella exposed to predation risk in phase 1 had significantly greater risk aversion behaviour (summed score of risky vs. safe behaviour) and significantly lower growth. In phase 2, we found that Nucella exposed to predation risk had greater survival. At the individual level (regardless of treatment), we found that Nucella with greater risk aversion scores in phase 1 had significantly higher survival in phase 2 when exposed to a lethal predator, but this came at a cost to their growth. This study provides some of the first empirical evidence, at both the group and individual level, testing a long-held assumption that predation risk-induced behavioural responses increase survival in the face of direct predation, but that these responses come at a cost to the prey. These results add to our growing understanding of the benefits of RITRs to individual fitness and non-consumptive effects generally.


Assuntos
Braquiúros , Gastrópodes , Animais , Cadeia Alimentar , Comportamento Predatório/fisiologia , Gastrópodes/fisiologia , Braquiúros/fisiologia , Dinâmica Populacional
2.
Ecol Lett ; 25(9): 2048-2061, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35925978

RESUMO

A narrative in ecology is that prey modify traits to reduce predation risk, and the trait modification has costs large enough to cause ensuing demographic, trophic and ecosystem consequences, with implications for conservation, management and agriculture. But ecology has a long history of emphasising that quantifying the importance of an ecological process ultimately requires evidence linking a process to unmanipulated field patterns. We suspected that such process-linked-to-pattern (PLP) studies were poorly represented in the predation risk literature, which conflicts with the confidence often given to the importance of risk effects. We reviewed 29 years of the ecological literature which revealed that there are well over 4000 articles on risk effects. Of those, 349 studies examined risk effects on prey fitness measures or abundance (i.e., non-consumptive effects) of which only 26 were PLP studies, while 275 studies examined effects on other interacting species (i.e., trait-mediated indirect effects) of which only 35 were PLP studies. PLP studies were narrowly focused taxonomically and included only three that examined unmanipulated patterns of prey abundance. Before concluding a widespread and influential role of predation-risk effects, more attention must be given to linking the process of risk effects to unmanipulated patterns observed across diverse ecosystems.


Assuntos
Ecossistema , Comportamento Predatório , Animais , Cadeia Alimentar
3.
Oecologia ; 200(3-4): 371-383, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36319867

RESUMO

There is growing evidence that the environment experienced by one generation can influence phenotypes in the next generation via transgenerational plasticity (TGP). One of the best-studied examples of TGP in animals is predator-induced transgenerational plasticity, whereby exposing parents to predation risk triggers changes in offspring phenotypes. Yet, there is a lack of general consensus synthesizing the predator-prey literature with existing theory pertaining to ecology and evolution of TGP. Here, we apply a meta-analysis to the sizable literature on predator-induced TGP (441 effect sizes from 29 species and 49 studies) to explore five hypotheses about the magnitude, form and direction of predator-induced TGP. Hypothesis #1: the strength of predator-induced TGP should vary with the number of predator cues. Hypothesis #2: the strength of predator-induced TGP should vary with reproductive mode. Hypothesis #3: the strength and direction of predator-induced TGP should vary among offspring phenotypic traits because some traits are more plastic than others. Hypothesis #4: the strength of predator-induced TGP should wane over ontogeny. Hypothesis #5: predator-induced TGP should generate adaptive phenotypes that should be more evident when offspring are themselves exposed to risk. We found strong evidence for predator-induced TGP overall, but no evidence that parental predator exposure causes offspring traits to change in a particular direction. Additionally, we found little evidence in support of any of the specific hypotheses. We infer that the failure to find consistent evidence reflects the heterogeneous nature of the phenomena, and the highly diverse experimental designs used to study it. Together, these findings set an agenda for future work in this area.


Assuntos
Comportamento Predatório , Reprodução , Animais , Fenótipo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33933630

RESUMO

The effects of maternal glucocorticoids (e.g. corticosterone, CORT) on offspring interest biologists due to increasing environmental perturbations. While little is known about the impact of maternal CORT on offspring fitness, it may modulate telomere length and compromise offspring health. Here, we use a modified real-time quantitative PCR assay to assess telomere length using small DNA quantities (<60 ng). We tested the hypothesis that increased maternal CORT during gestation decreases offspring telomere length. While CORT-driven telomere shortening is well established within individuals, cross-generational effects remain unclear. We treated wild-caught gravid female eastern fence lizards (Sceloporus undulatus) with daily transdermal applications of CORT, at ecologically relevant levels, from capture to laying. Maternal CORT treatment did not alter maternal telomere length, although baseline maternal CORT concentrations had a weak, negative correlation with maternal telomere length. There was no relation between mother and offspring telomere length. There was a trend for maternal CORT treatment to shorten telomeres of sons but not daughters. Our treatment replicated exposure to a single stressor per day, likely underestimating effects seen in the wild where stressors may be more frequent. Future research should further explore fitness consequences of maternal CORT effects.


Assuntos
Glucocorticoides/metabolismo , Lagartos/fisiologia , Prenhez , Corticosteroides/farmacologia , Animais , Senescência Celular , Corticosterona/metabolismo , DNA/análise , DNA/metabolismo , Feminino , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico , Telômero/ultraestrutura
5.
J Anim Ecol ; 89(6): 1302-1316, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32215909

RESUMO

There is a large and growing interest in non-consumptive effects (NCEs) of predators. Diverse and extensive evidence shows that predation risk directly influences prey traits, such as behaviour, morphology and physiology, which in turn, may cause a reduction in prey fitness components (i.e. growth rate, survival and reproduction). An intuitive expectation is that NCEs that reduce prey fitness will extend to alter population growth rate and therefore population size. However, our intensive literature search yielded only 10 studies that examined how predator-induced changes in prey traits translate to changes in prey population size. Further, the scant evidence for risk-induced changes on prey population size have been generated from studies that were performed in very controlled systems (mesocosm and laboratory), which do not have the complexity and feedbacks of natural settings. Thus, although likely that predation risk alone can alter prey population size, there is little direct empirical evidence that demonstrates that it does. There are also clear reasons that risk effects on population size may be much smaller than the responses on phenotype and fitness components that are typically measured, magnifying the need to show, rather than infer, effects on population size. Herein we break down the process of how predation risk influences prey population size into a chain of events (predation risk affects prey traits, which affect prey fitness components and population growth rate, which affect prey population size), and highlight the complexity of each transition. We illustrate how the outcomes of these transitions are not straightforward, and how environmental context strongly dictates the direction and magnitude of effects. Indeed, the high variance in prey responses is reflected in the variance of results reported in the few studies that have empirically quantified risk effects on population size. It is therefore a major challenge to predict population effects given the complexity of how environmental context interacts with predation risk and prey responses. We highlight the critical need to appreciate risk effects at each level in the chain of events, and that changes at one level cannot be assumed to translate into changes in the next because of the interplay between risk, prey responses, and the environment. The gaps in knowledge we illuminate underscore the need for more evidence to substantiate the claim that predation risk effects extend to prey population size. The lacunae we identify should inspire future studies on the impact of predation risk on population-level responses in free-living animals.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Densidade Demográfica , Crescimento Demográfico , Reprodução
6.
Oecologia ; 193(2): 273-283, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32542471

RESUMO

The risk of consumption is a pervasive aspect of ecology and recent work has focused on synthesis of consumer-resource interactions (e.g., enemy-victim ecology). Despite this, theories pertaining to the timing and magnitude of defenses in animals and plants have largely developed independently. However, both animals and plants share the common dilemma of uncertainty of attack, can gather information from the environment to predict future attacks and alter their defensive investment accordingly. Here, we present a novel, unifying framework based on the way an organism's ability to defend itself during an attack can shape their pre-attack investment in defense. This framework provides a useful perspective on the nature of information use and variation in defensive investment across the sequence of attack-related events, both within and among species. It predicts that organisms with greater proportional fitness loss if attacked will gather and respond to risk information earlier in the attack sequence, while those that have lower proportional fitness loss may wait until attack is underway. This framework offers a common platform to compare and discuss consumer effects and provides novel insights into the way risk information can propagate through populations, communities, and ecosystems.


Assuntos
Ecossistema , Plantas , Animais , Herbivoria
7.
Biol Lett ; 15(1): 20180718, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958207

RESUMO

While it is well established that maternal stress hormones, such as corticosterone (CORT), can induce transgenerational phenotypic plasticity, few studies have addressed the influence of maternal CORT on pre-natal life stages. We tested the hypothesis that experimentally increased CORT levels of gravid female eastern fence lizards ( Sceloporus undulatus) would alter within-egg embryonic phenotype, particularly heart rates. We found that embryos from CORT-treated mothers had heart rates that increased faster with increasing temperature, resulting in higher heart rates at developmentally relevant temperatures but similar heart rates at maintenance relevant temperatures, compared with embryos of control mothers. Thus, maternal CORT appears to alter the physiology of pre-natal offspring. This may speed development and decrease the amount of time spent in eggs, the most vulnerable stage of life.


Assuntos
Corticosterona , Lagartos , Animais , Feminino , Frequência Cardíaca , Temperatura
8.
Oecologia ; 190(2): 309-321, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30906952

RESUMO

Animals in temperate northern regions employ a variety of strategies to cope with the energetic demands of winter. Behavioral plasticity may be important, as winter weather conditions are increasingly variable as a result of modern climate change. If behavioral strategies for thermoregulation are no longer effective in a changing environment, animals may experience physiological stress, which can have fitness consequences. We monitored winter roosting behavior of radio-tagged ruffed grouse (Bonasa umbellus), recorded snow depth and temperature, and assayed droppings for fecal corticosterone metabolites (FCM). Grouse FCM levels increased with declining temperatures. FCM levels were high when snow was shallow, but decreased rapidly as snow depth increased beyond 20 cm. When grouse used snow burrows, there was no effect of temperature on FCM levels. Snow burrowing is an important strategy that appears to allow grouse to mediate the possibly stressful effects of cold temperatures. This is one of the first studies to explore how variable winter weather conditions influence stress in a free-living cold-adapted vertebrate and its ability to mediate this relationship behaviorally. Animals that depend on the snowpack as a winter refuge will likely experience increased stress and possible fitness costs resulting from the loss of snow cover due to climate change.


Assuntos
Aves , Neve , Animais , Mudança Climática , Estações do Ano , Temperatura
9.
Oecologia ; 189(4): 883-890, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30868375

RESUMO

The landscape of fear is an important driver of prey space use. However, prey can navigate the landscape of fear by exploiting temporal refuges from predation risk. We hypothesized that diel patterns of predator and prey movement and space use would be inversely correlated due to temporal constraints on predator habitat domain. Specifically, we evaluated habitat selection and activity of the vicuña and its only predator, the puma, during three diel periods: day, dawn/dusk, and night. Pumas selected the same habitats regardless of diel period-vegetated and rugged areas that feature stalking cover for pumas-but increased their activity levels during dawn/dusk and night when they benefit from reduced detection by prey. Vicuñas avoided areas selected by pumas and reduced activity at night, but selected vegetated areas and increased activity by day and dawn/dusk. Vicuña habitat selection and movement strategies appeared to reduce the risk of encountering pumas; movement rates of pumas and vicuñas were negatively correlated across the diel cycle, and habitat selection was negatively correlated during dawn/dusk and night. Our study shows that an ambush predator's temporal activity and space use patterns interact to create diel refugia and shape the antipredator behaviors of its prey. Importantly, it is likely the very nature of ambush predators' static habitat specificity that makes predator activity important to temporally varying perceptions of risk. Prey which depend on risky habitats for foraging appear to mitigate risk by feeding when they can more easily detect predators and when predators are least active.


Assuntos
Puma , Refúgio de Vida Selvagem , Animais , Ecossistema , Medo , Comportamento Predatório
10.
J Anim Ecol ; 87(6): 1685-1697, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30074248

RESUMO

While biomedical researchers have long appreciated the influence of maternally derived glucocorticoids (GCs) on offspring phenotype, ecologists have only recently begun exploring its impact in wild animals. Interpreting biomedical findings within an ecological context has posited that maternal stress, mediated by elevations of maternal GCs, may play an adaptive role preparing offspring for a stressful or rigorous environment. Yet, the influence of maternal stress on offspring phenotype has been little studied in wild animals. We experimentally elevated GCs to ecologically relevant levels (mimicking increases in maternal stress hormones following a nonlethal predator encounter, a heat challenge, or a chasing or confinement stressor) in female eastern fence lizards Sceloporus undulatus during gestation. We tested the hypothesis that maternally derived stress hormones themselves are sufficient to alter offspring phenotype. Specifically, we examined the effects of experimentally elevated maternal GCs on fitness-relevant traits of the mother, her eggs and her subsequent offspring. We found that daily maternal GC elevation: (a) increased maternal antipredator behaviours and postlaying glucose levels; (b) had no effect on egg morphology or caloric value, but altered yolk hormone (elevated GC) and nutrient content; and (c) altered offspring phenotype including stress-relevant physiology, morphology and behaviour. These findings reveal that maternally derived GCs alone can alter offspring phenotype in a wild animal, changes that may be mediated via maternal behaviour, and egg hormone and nutrient content. Understanding the ecological consequences of these effects under different environmental conditions will be critical for determining the adaptive significance of elevated maternal GCs for offspring.


Assuntos
Hipersensibilidade a Ovo , Lagartos , Animais , Feminino , Humanos , Mães , Óvulo , Fenótipo
11.
Am Nat ; 190(6): 854-859, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29166160

RESUMO

Hibernation provides a means of escaping the metabolic challenges associated with seasonality, yet the ability of mammals to prolong or reenter seasonal dormancy in response to extreme weather events is unclear. Here, we show that Arctic ground squirrels in northern Alaska exhibited sex-dependent plasticity in the physiology and phenology of hibernation in response to a series of late spring snowstorms in 2013 that resulted in the latest snowmelt on record. Females and nonreproductive males responded to the >1-month delay in snowmelt by extending heterothermy or reentering hibernation after several days of euthermy, leading to a >2-week delay in reproduction compared to surrounding years. In contrast, reproductive males neither extended nor reentered hibernation, likely because seasonal gonadal growth and development and subsequent testosterone release prevents a return to torpor. Our findings reveal intriguing differences in responses of males and females to climatic stressors, which can generate a phenological mismatch between the sexes.


Assuntos
Hibernação/fisiologia , Sciuridae/fisiologia , Alaska , Animais , Regiões Árticas , Fontes Geradoras de Energia , Feminino , Masculino , Fatores Sexuais
12.
J Anim Ecol ; 84(2): 323-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26247815

RESUMO

Ecologists, evolutionary biologists and biomedical researchers are investing great effort in understanding the impact maternal stress may have on offspring phenotypes. Bian et al. advance this field by providing evidence that density-induced maternal stress programs offspring phenotypes, resulting in direct consequences on their fitness and population dynamics, but doing so in a context-dependent manner. They suggest that intrinsic state alterations induced by maternal stress may be one ecological factor generating delayed density-dependent effects. This research highlights the connection between maternal stress and population dynamics, and the importance of understanding the adaptive potential of such effects in a context-dependent manner.


Assuntos
Adaptação Fisiológica , Estresse Fisiológico/fisiologia , Animais , Feminino , Masculino , Exposição Materna , Dinâmica Populacional , Gravidez , Reprodução
13.
Conserv Physiol ; 12(1): coae045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974502

RESUMO

In the age of global climate change, extreme climatic events are expected to increase in frequency and severity. Animals will be forced to cope with these novel stressors in their environment. Glucocorticoids (i.e. 'stress' hormones) facilitate an animal's ability to cope with their environment. To date, most studies involving glucocorticoids focus on the immediate physiological effects of an environmental stressor on an individual, few studies have investigated the long-term physiological impacts of such stressors. Here, we tested the hypothesis that previous exposure to an environmental stressor will impart lasting consequences to an individual's glucocorticoid levels. In semi-arid environments, variable rainfall drives forage availability for herbivores. Reduced seasonal precipitation can present an extreme environmental stressor potentially imparting long-term impacts on an individual's glucocorticoid levels. We examined the effects of rainfall and environmental characteristics (i.e. soil and vegetation attributes) during fawn-rearing (i.e. summer) on subsequent glucocorticoid levels of female white-tailed deer (Odocoileus virginianus) in autumn. We captured 124 adult (≥2.5-year-old) female deer via aerial net-gunning during autumn of 2015, 2016 and 2021 across four populations spanning a gradient of environmental characteristics and rainfall in the semi-arid environment of South Texas, USA. We found for every 1 cm decrease in summer rainfall, faecal glucocorticoid levels in autumn increased 6.9%, but only in lactating females. Glucocorticoid levels in non-lactating, female deer were relatively insensitive to environmental conditions. Our study demonstrates the long-lasting effects of environmental stressors on an individual's glucocorticoid levels. A better understanding of the long-term effects stressors impart on an individual's glucocorticoid levels will help to evaluate the totality of the cost of a stressor to an individual's welfare and predict the consequences of future climate scenarios.

14.
Proc Biol Sci ; 280(1765): 20130016, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23825201

RESUMO

Seasonal recurrence of biological processes (phenology) and its relationship to environmental change is recognized as being of key scientific and public concern, but its current study largely overlooks the extent to which phenology is based on biological time-keeping mechanisms. We highlight the relevance of physiological and neurobiological regulation for organisms' responsiveness to environmental conditions. Focusing on avian and mammalian examples, we describe circannual rhythmicity of reproduction, migration and hibernation, and address responses of animals to photic and thermal conditions. Climate change and urbanization are used as urgent examples of anthropogenic influences that put biological timing systems under pressure. We furthermore propose that consideration of Homo sapiens as principally a 'seasonal animal' can inspire new perspectives for understanding medical and psychological problems.


Assuntos
Relógios Biológicos/fisiologia , Mudança Climática , Periodicidade , Estações do Ano , Adaptação Fisiológica , Migração Animal/fisiologia , Animais , Aves/fisiologia , Hibernação/fisiologia , Humanos , Fotoperíodo , Reprodução/fisiologia , Urbanização
15.
Proc Biol Sci ; 278(1716): 2369-75, 2011 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-21177687

RESUMO

Ecologists need an empirical understanding of physiological and behavioural adjustments that animals can make in response to seasonal and long-term variations in environmental conditions. Because many species experience trade-offs between timing and duration of one seasonal event versus another and because interacting species may also shift phenologies at different rates, it is possible that, in aggregate, phenological shifts could result in mismatches that disrupt ecological communities. We investigated the timing of seasonal events over 14 years in two Arctic ground squirrel populations living 20 km apart in Northern Alaska. At Atigun River, snow melt occurred 27 days earlier and snow cover began 17 days later than at Toolik Lake. This spatial differential was reflected in significant variation in the timing of most seasonal events in ground squirrels living at the two sites. Although reproductive males ended seasonal torpor on the same date at both sites, Atigun males emerged from hibernation 9 days earlier and entered hibernation 5 days later than Toolik males. Atigun females emerged and bred 13 days earlier and entered hibernation 9 days earlier than those at Toolik. We propose that this variation in phenology over a small spatial scale is likely generated by plasticity of physiological mechanisms that may also provide individuals the ability to respond to variation in environmental conditions over time.


Assuntos
Aclimatação/fisiologia , Clima , Hibernação/fisiologia , Sciuridae/fisiologia , Estações do Ano , Comportamento Sexual Animal/fisiologia , Alaska , Análise de Variância , Animais , Feminino , Masculino , Fatores Sexuais , Especificidade da Espécie , Estatísticas não Paramétricas , Fatores de Tempo
16.
Oecologia ; 166(3): 593-605, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21246218

RESUMO

Predation is a central organizing process affecting populations and communities. Traditionally, ecologists have focused on the direct effects of predation--the killing of prey. However, predators also have significant sublethal effects on prey populations. We investigated how fluctuating predation risk affected the stress physiology of a cyclic population of snowshoe hares (Lepus americanus) in the Yukon, finding that they are extremely sensitive to the fluctuating risk of predation. In years of high predator numbers, hares had greater plasma cortisol levels at capture, greater fecal cortisol metabolite levels, a greater plasma cortisol response to a hormone challenge, a greater ability to mobilize energy and poorer body condition. These indices of stress had the same pattern within years, during the winter and over the breeding season when the hare:lynx ratio was lowest and the food availability the worst. Previously we have shown that predator-induced maternal stress lowers reproduction and compromises offspring's stress axis. We propose that predator-induced changes in hare stress physiology affect their demography through negative impacts on reproduction and that the low phase of cyclic populations may be the result of predator-induced maternal stress reducing the fitness of progeny. The hare population cycle has far reaching ramifications on predators, alternate prey, and vegetation. Thus, predation is the predominant organizing process for much of the North American boreal forest community, with its indirect signature--stress in hares--producing a pattern of hormonal changes that provides a sensitive reflection of fluctuating predator pressure that may have long-term demographic consequences.


Assuntos
Cadeia Alimentar , Lebres/fisiologia , Hidrocortisona/análise , Hidrocortisona/sangue , Reprodução , Estresse Fisiológico , Animais , Análise Química do Sangue , Composição Corporal , Metabolismo Energético , Fezes/química , Feminino , Lebres/sangue , Lebres/imunologia , Lynx , Masculino , Dinâmica Populacional , Estações do Ano , Yukon
17.
Oecologia ; 166(4): 869-87, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21344254

RESUMO

Stress responses play a key role in allowing animals to cope with change and challenge in the face of both environmental certainty and uncertainty. Measurement of glucocorticoid levels, key elements in the neuroendocrine stress axis, can give insight into an animal's well-being and can aid understanding ecological and evolutionary processes as well as conservation and management issues. We give an overview of the four main biological samples that have been utilized [blood, saliva, excreta (feces and urine), and integumentary structures (hair and feathers)], their advantages and disadvantages for use with wildlife, and some of the background and pitfalls that users must consider in interpreting their results. The matrix of choice will depend on the nature of the study and of the species, on whether one is examining the impact of acute versus chronic stressors, and on the degree of invasiveness that is possible or desirable. In some cases, more than one matrix can be measured to achieve the same ends. All require a significant degree of expertise, sometimes in obtaining the sample and always in extracting and analyzing the glucocorticoid or its metabolites. Glucocorticoid measurement is proving to be a powerful integrator of environmental stressors and of an animal's condition.


Assuntos
Animais Selvagens/sangue , Glucocorticoides/sangue , Estresse Fisiológico , Estresse Psicológico/sangue , Animais , Animais Selvagens/urina , Plumas/química , Fezes/química , Glucocorticoides/análise , Glucocorticoides/urina , Cabelo/química , Sistemas Neurossecretores/metabolismo , Saliva/química , Estresse Psicológico/urina , Estudos de Validação como Assunto
18.
Behav Ecol ; 32(6): 1330-1338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34949960

RESUMO

Elevated maternal glucocorticoid levels during gestation can lead to phenotypic changes in offspring via maternal effects. Although such effects have traditionally been considered maladaptive, maternally derived glucocorticoids may adaptively prepare offspring for their future environment depending upon the correlation between maternal and offspring environments. Nevertheless, relatively few studies test the effects of prenatal glucocorticoid exposure across multiple environments. We tested the potential for ecologically relevant increases in maternal glucocorticoids in the eastern fence lizard (Sceloporus undulatus) to induce adaptive phenotypic changes in offspring exposed to high or low densities of an invasive fire ant predator. Maternal treatment had limited effects on offspring morphology and behavior at hatching, but by 10 days of age, we found maternal treatment interacted with offspring environment to alter anti-predator behaviors. We did not detect differences in early-life survival based on maternal treatment or offspring environment. Opposing selection on anti-predator behaviors from historic and novel invasive predators may confound the potential of maternal glucocorticoids to adaptively influence offspring behavior. Our test of the phenotypic outcomes of transgenerational glucocorticoid effects across risk environments provides important insight into the context-specific nature of this phenomenon and the importance of understanding both current and historic evolutionary pressures.

19.
Ecology ; 91(10): 2983-94, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21058558

RESUMO

Maternal effects may be a major factor influencing the demography of populations. In mammals, the transmission of stress hormones between mother and offspring may play an important role in these effects. Laboratory studies have shown that stressors during pregnancy and lactation result in lifelong programming of the offspring phenotype. However, the relevance of these studies to free-living mammals is unclear. The 10-year snowshoe hare (Lepus americanus) cycle is intimately linked to fluctuating predation pressure and predation risk. The enigma of these cycles is the lack of population growth following the decline phase, when the predators have virtually all disappeared and the food supply is ample. We have shown that a predator-induced increase in maternal stress hormone levels resulted in a decline in reproduction. Here we examine population and hormone changes over a four-year period from the increase (2005) to the decline (2008). We report (1) that an index of maternal stress (fecal corticosteroid metabolite [FCM] concentrations) fluctuates in synchrony with predator density during the breeding season; (2) that maternal FCM levels are echoed in their offspring, and this occurs at a population-wide level; and (3) that higher maternal FCM levels at birth are correlated with an increased responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis in their progeny. Our results show an intergenerational inheritance of stress hormones in a free-ranging population of mammals. We propose that the lack of recovery of reproductive rates during the early low phase of the hare cycle may be the result of the impacts of intergenerational, maternally inherited stress hormones caused by high predation risk during the decline phase.


Assuntos
Lebres/fisiologia , Lynx/fisiologia , Comportamento Predatório/fisiologia , Corticosteroides/química , Corticosteroides/metabolismo , Animais , Fezes/química , Feminino , Dinâmica Populacional , Gravidez , Reprodução , Estresse Fisiológico , Tempo
20.
Gen Comp Endocrinol ; 166(3): 614-9, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20051245

RESUMO

Many studies have recently focused on stress as a marker of an animal's well being. Since animals respond to a stressor by increasing their glucocorticoid (GC) levels there has been much interest in measuring these hormones. Fecal GC analyses have been used in a wide range of studies as they are an easily obtained, non-invasive measure of these stress hormones. However, these analyses rest on two major assumptions. First, they assume that fecal GC metabolites reflect free, biologically active levels of GCs in the plasma. Second, they assume that differences in fecal GC metabolite levels among animals are an accurate reflection of their physiological state and thus of their ability to respond to a stressor. We tested these assumptions in a population of free-ranging snowshoe hares (Lepus americanus) in the southwestern Yukon, from 2006 to 2008. Both assumptions were verified. Plasma free cortisol levels mirrored bile and fecal cortisol metabolite (FCM) levels, but plasma total cortisol levels did not. Differences in FCM concentrations among hares robustly predicted their response to a hormonal challenge. Hares with higher FCM concentrations showed a greater resistance to the suppression of their free plasma cortisol following a dexamethasone injection and a more marked increase of free plasma cortisol following an ACTH injection. Furthermore, we found that changes in FCM concentrations in autumn and winter over two years reliably tracked changes in plasma free cortisol levels obtained from the hormonal challenge test. These results indicate that both fecal and plasma measures of an animal's stress physiology are concordant: they tell the same story.


Assuntos
Fezes/química , Glucocorticoides/sangue , Glucocorticoides/metabolismo , Estresse Psicológico/sangue , Estresse Psicológico/metabolismo , Animais , Bile/química , Lebres , Hidrocortisona/sangue , Hidrocortisona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA