Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(19): e202319930, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38237059

RESUMO

The first assortment of achiral pentafluorosulfanylated cyclobutanes (SF5-CBs) are now synthetically accessible through strain-release functionalization of [1.1.0]bicyclobutanes (BCBs) using SF5Cl. Methods for both chloropentafluorosulfanylation and hydropentafluorosulfanylation of sulfone-based BCBs are detailed herein, as well as proof-of-concept that the logic extends to tetrafluoro(aryl)sulfanylation, tetrafluoro(trifluoromethyl)sulfanylation, and three-component pentafluorosulfanylation reactions. The methods presented enable isolation of both syn and anti isomers of SF5-CBs, but we also demonstrate that this innate selectivity can be overridden in chloropentafluorosulfanylation; that is, an anti-stereoselective variant of SF5Cl addition across sulfone-based BCBs can be achieved by using inexpensive copper salt additives. Considering the SF5 group and CBs have been employed individually as nonclassical bioisosteres, structural aspects of these unique SF5-CB "hybrid isosteres" were then contextualized using SC-XRD. From a mechanistic standpoint, chloropentafluorosulfanylation ostensibly proceeds through a curious polarity mismatch addition of electrophilic SF5 radicals to the electrophilic sites of the BCBs. Upon examining carbonyl-containing BCBs, we also observed rare instances whereby radical addition to the 1-position of a BCB occurs. The nature of the key C(sp3)-SF5 bond formation step - among other mechanistic features of the methods we disclose - was investigated experimentally and with DFT calculations. Lastly, we demonstrate compatibility of SF5-CBs with various downstream functionalizations.

2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834144

RESUMO

A microsomal epoxide hydrolase (mEH) metabolizes in vivo in both xenobiotic and endogenous epoxides associated with signaling function. Findings in patients suggest that mEH might be a biomarker for several diseases, including metastatic cancer and viral hepatitis. To easily quantify mEH, nanobodies specific to the human mEH were isolated from a phage library of llama VHHs. Four unique clones were obtained and used for developing ELISAs. Three formats of double antibody sandwich assays were investigated using different detection strategies. Using PolyHRP, the signal was strongly amplified, yielding a 22-fold lower LOD (12 pg mL-1) than the 'conventional'. To further validate the performance of the immunoassays, human tissue samples were analyzed by nanobody-based ELISAs and compared to the enzyme activities (R2 > 0.95). The results demonstrate that these nanobodies are powerful tools for the quantification of human mEH and could eventually result in a bedside assay.


Assuntos
Epóxido Hidrolases , Anticorpos de Domínio Único , Humanos , Epóxido Hidrolases/metabolismo , Ensaio de Imunoadsorção Enzimática , Anticorpos , Compostos de Epóxi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA