Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genomics ; 116(3): 110849, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38679345

RESUMO

Paulownia fortunei is an ecologically and economically valuable tree cultivated for its rapid growth and high-quality timber. To enhance Paulownia germplasm, we have developed the elite variety QingT with patented advantages in growth rate and apical dominance. To illuminate the genetic basis of QingT's superior traits, here we harness comparative population genomics to analyze genomic variation patterns between QingT and common Paulownia. We performed whole-genome re-sequencing of 30 QingT and 30 common samples, detecting 15.6 million SNPs and 2.6 million indels. Phylogeny and population structure analyses robustly partitioned common and QingT into distinct groups which indicate robust genome stabilization. QingT exhibited reduced heterozygosity and linkage disequilibrium decay compared to common Paulownia, reflecting high recombination, indicating hybridizing effects with common white-flowered string is the source of its patented advantages. Genome selection scans uncovered 25 regions of 169 genes with elevated nucleotide diversity, indicating selection sweeps among groups. Functional analysis of sweep genes revealed upregulation of ribosomal, biosynthesis, and growth pathways in QingT, implicating enhanced protein production and developmental processes in its rapid growth phenotype. This study's insights comprehensively chart genomic variation during Paulownia breeding, localizing candidate loci governing agronomic traits, and underpinnings of future molecular breeding efforts to boost productivity.


Assuntos
Genoma de Planta , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Seleção Genética , Melhoramento Vegetal , Desequilíbrio de Ligação , Filogenia
2.
Angew Chem Int Ed Engl ; 62(3): e202214422, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36378119

RESUMO

Enabling dynamically tunable emissive systems offers opportunities for constructing smart materials. Clusteroluminescence, as unconventional luminescence, has attracted increasing attention in both fundamental and applied sciences. Herein, we report a supramolecular poly(disulfides) network with tunable clusteroluminescence. The reticular H-bonds synergize the rigidity and mobility of dynamic networks, and endow the resulting materials with mechanical adaptivity and robustness, simultaneously enabling efficient clusteroluminescence and phosphorescence at 77 K. Orthogonally tunable luminescence are achieved in two manners, i.e., slow backbone disulfide exchange and fast side-chain metal coordination. Further exploration of the reprocessability and chemical closed-loop recycling of intrinsic dynamic networks for sustainable materials is feasible. We foresee that the synergistic strategy of dynamic chemistry offers a novel pathway and potential opportunities for smart emissive materials.

3.
Angew Chem Int Ed Engl ; 62(11): e202215329, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36602285

RESUMO

Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.

4.
Angew Chem Int Ed Engl ; 61(14): e202117195, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35106884

RESUMO

Organism-inspired hollow structures are attracting increasing interest for the construction of various bionic functional hollow materials. Next-generation self-evolution hollow materials tend to combine simple synthesis, high mechanical strength, and regular shape. In this study, we designed and synthesized a novel dry-network polythiourethane thermoset with excellent mechanical performance. The polymer film could evolve into a neat and well-organized object with a macroscopic hollow interior structure after being immersed in an aqueous NaOH solution. The self-evolution hollow structure originated from a hydrogen-bonded polymer network, which was later transformed into a network bearing both hydrogen bonds and ionic bonds. The swelling and thickness growth of this material could be controlled by the NaOH concentration and the immersion time. This unique self-evolution behavior was further utilized to produce a series of macroscopic 3D hollow-containing molds, which could be potentially applied in the production of smart materials.


Assuntos
Hidrogênio , Polímeros , Ligação de Hidrogênio , Polímeros/química , Hidróxido de Sódio , Água
5.
J Am Chem Soc ; 141(32): 12804-12814, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31348651

RESUMO

Programming the hierarchical self-assembly of small molecules has been a fundamental topic of great significance in biological systems and artificial supramolecular systems. Precise and highly programmed self-assembly can produce supramolecular architectures with distinct structural features. However, it still remains a challenge how to precisely control the self-assembly pathway in a desirable way by introducing abundant structural information into a limited molecular backbone. Here we disclose a strategy that directs the hierarchical self-assembly of sodium thioctate, a small molecule of biological origin, into a highly ordered supramolecular layered network. By combining the unique dynamic covalent ring-opening-polymerization of sodium thioctate and an evaporation-induced interfacial confinement effect, we precisely direct the dynamic supramolecular self-assembly of this simple small molecule in a scheduled hierarchical pathway, resulting in a layered structure with long-range order at both macroscopic and molecular scales, which is revealed by small-angle and wide-angle X-ray scattering technologies. The resulting supramolecular layers are found to be able to bind water molecules as structural water, which works as an interlayer lubricant to modulate the material properties, such as mechanical performance, self-healing capability, and actuating function. Analogous to many reversibly self-assembled biological systems, the highly dynamic polymeric network can be degraded into monomers and reformed by a water-mediated route, exhibiting full recyclability in a facile, mild, and environmentally friendly way. This approach for assembling commercial small molecules into structurally complex materials paves the way for low-cost functional supramolecular materials based on synthetically simple procedures.

6.
Chem Sci ; 15(22): 8295-8310, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846397

RESUMO

Semi-crystalline polymers (SCPs) with anisotropic amorphous and crystalline domains as the basic skeleton are ubiquitous from natural products to synthetic polymers. The combination of chemically incompatible hard and soft phases contributes to unique thermal and mechanical properties. The further introduction of supramolecular interactions as noncovalently interacting crystal phases and soft dynamic crosslinking sites can synergize with covalent polymer chains, thereby enabling effective energy dissipation and dynamic rearrangement in hierarchical superstructures. Therefore, this review will focus on the design principles of SCPs by discussing supramolecular construction strategies and state-of-the-art functional applications from mechanical toughening to sophisticated functions such as dynamic adaptivity, shape memory, ion transport, etc. Current challenges and further opportunities are discussed to provide an overview of possible future directions and potential material applications.

7.
Sci Data ; 11(1): 775, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003271

RESUMO

Kmeria septentrionalis is a critically endangered tree endemic to Guangxi, China, and is listed on the International Union for Conservation of Nature's Red List. The lack of genetic information and high-quality genome data has hindered conservation efforts and studies on this species. In this study, we present a chromosome-level genome assembly of K. septentrionalis. The genome was initially assembled to be 2.57 Gb, with a contig N50 of 11.93 Mb. Hi-C guided genome assembly allowed us to anchor 98.83% of the total length of the initial contigs onto 19 pseudochromosomes, resulting in a scaffold N50 of 135.08 Mb. The final chromosome-level genome, spaning 2.54 Gb, achieved a BUSCO completeness of 98.9% and contained 1.67 Gb repetitive elements and 35,927 coding genes. This high-quality genome assembly provides a valuable resource for understanding the genetic basis of conservation-related traits and biological properties of this endangered tree species. Furthermore, it lays a critical foundation for evolutionary studies within the Magnoliaceae family.


Assuntos
Espécies em Perigo de Extinção , Genoma de Planta , Cromossomos de Plantas , China , Árvores/genética
8.
Natl Sci Rev ; 10(2): nwac139, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36994382

RESUMO

Developing molecular approaches to the creation of robust and water-resistant adhesive materials promotes a fundamental understanding of interfacial adhesion mechanisms as well as future applications of biomedical adhesive materials. Here, we present a simple and robust strategy that combines natural thioctic acid and mussel-inspired iron-catechol complexes to enable ultra-strong adhesive materials that can be used underwater and simultaneously exhibit unprecedentedly high adhesion strength on diverse surfaces. Our experimental results show that the robust crosslinking interaction of the iron-catechol complexes, as well as high-density hydrogen bonding, are responsible for the ultra-high interfacial adhesion strength. The embedding effect of the hydrophobic solvent-free network of poly(disulfides) further enhances the water-resistance. The dynamic covalent poly(disulfides) network also makes the resulting materials reconfigurable, thus enabling reusability via repeated heating and cooling. This molecule-engineering strategy offers a general and versatile solution to the design and construction of dynamic supramolecular adhesive materials.

9.
ACS Appl Mater Interfaces ; 13(37): 44860-44867, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499480

RESUMO

Developing photopolymerizable polymeric materials offers many opportunities to process materials in a remote and controllable manner. However, most photopolymerizable technologies require the external introduction of photoabsorbing units, whereas designing intrinsically photopolymerizable polymers is still highly challenging. Here, we report that a natural small-molecule disulfide, thioctic acid, can be directly transformed into a poly(disulfides) network under the irradiation of visible light without any external additives. The resulting polymer network exhibits optical transparency, mechanical stretchability and toughness, ambient self-healing ability, and especially strong adhesive ability to different surfaces. The dynamic covalent backbones of the poly(disulfides) endow the depolymerization ability to recycle the material in a closed-loop manner. We foresee that this facile and robust photopolymerization system is of great promise toward low-cost and high-performance photocuring coatings and adhesives.

10.
Adv Mater ; 32(23): e2000345, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32350950

RESUMO

Elastomers with excellent mechanical properties are in substantial demand for various applications, but there is always a tradeoff between their mechanical strength and stretchability. For example, partially replacing strong covalent crosslinking by weak sacrificial bonds can enhance the stretchability but also usually decreases the mechanical strength. To surmount this inherent tradeoff, a supramolecular strategy of introducing a zipper-like sliding-ring mechanism in a hydrogen-bond-crosslinked polyurethane network is proposed. A very small amount (0.5 mol%) of an external additive (pseudo[2]rotaxane crosslinker) can dramatically increase both the mechanical strength and elongation of this polyurethane network by nearly one order of magnitude. Based on the investigation of the relationship between molecular structure and mechanical properties, this enhancement is attributable to a unique molecular-level zipper-like ring-sliding motion, which efficiently dissipates mechanical work in the solvent-free network. This research not only provides a distinct and general strategy for the construction of high-performance elastomers but also paves the way for the practical application of artificial molecular machines toward solvent-free polyurethane networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA