Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Sci Technol ; 57(48): 19341-19351, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934861

RESUMO

Polystyrene nanoplastics (PS-NPs) are emerging environmental contaminants that are ubiquitously detected in various environments and have toxic effects on various organisms. Nevertheless, the transgenerational reproductive toxicity and underlying mechanisms of PS-NPs remain largely unknown, especially for photoaged PS-NPs under ultraviolet irradiation. In this study, only the parental generation (P0) was exposed to virgin and aged PS-NPs at environmentally relevant concentrations (0.1-100 µg/L), and subsequent generations (F1-F4) were cultured under normal conditions. Ultraviolet irradiation induced the generation of environmentally persistent free radicals and reactive oxygen species, which altered the physical and chemical characteristics of PS-NPs. The results of toxicity testing suggested that exposure to aged PS-NPs caused a more severe decrease in brood size, egg ejection rate, number of fertilized eggs, and hatchability than did the virgin PS-NPs in the P0, F1, and F2 generations. Additionally, a single maternal exposure to aged PS-NPs resulted in transgenerational effects on fertility in the F1 and F2 generations. Increased levels of H3K4 and H3K9 methylation were observed in the F1 and F2 generations, which were concomitant with the transgenerational downregulation of the expression of associated genes, such as spr-5, set-17, and met-2. On the basis of correlation analyses, the levels of histone methylation and the expression of these genes were significantly correlated to transgenerational reproductive effects. Further research showed that transgenerational effects on fertility were not observed in spr-5(by134), met-2(n4256), and set-17(n5017) mutants. Overall, maternal exposure to aged PS-NPs induced transgenerational reproductive effects via H3K4 and H3K9 methylation, and the spr-5, met-2, and set-17 genes were involved in the regulation of transgenerational toxicity. This study provides new insights into the potential risks of photoaging PS-NPs in the environment.


Assuntos
Caenorhabditis elegans , Histonas , Animais , Feminino , Caenorhabditis elegans/genética , Histonas/genética , Histonas/farmacologia , Metilação , Poliestirenos/toxicidade , Microplásticos
2.
Chemosphere ; 361: 142560, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851504

RESUMO

Microplastics (MPs) are ubiquitous environmental contaminants that exert multiple toxicological effects. Current studies have mainly focused on modeled or unaged MPs, which lack environmental relevance. The generation and toxicity of environmentally persistent free radicals (EPFRs) on photoaging polystyrene (PS) have not been well studied, and the role of EPFRs on the toxic effects of photoaged PS is easily ignored. Photoaging primarily produces EPFRs, followed by an increase in reactive oxygen species (ROS) content and oxidative potential, which alter the physicochemical properties of photoaged PS. The mean lifespan and lipofuscin content were significantly altered after acute exposure to photoaged PS for 45 d (PS-45) and 60 d (PS-60) in Caenorhabditis elegans. Intestinal ROS and gst-4::GFP expression were enhanced, concomitant with the upregulation of associated genes. Treatment with N-acetyl-l-cysteine by radical quenching test significantly decreased EPFRs levels on the aged PS and inhibited the acceleration of the aging and oxidative stress response in nematodes. Pearson's correlation analysis also indicated that the EPFRs levels were significantly associated with these factors. Thus, the EPFRs generated on photoaged PS contribute to the acceleration of aging by oxidative stress. This study provides new insights into the potential toxicity and highlights the need to consider the role of EPFRs in the toxicity assessment of photoaged PS.


Assuntos
Caenorhabditis elegans , Longevidade , Microplásticos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Animais , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Radicais Livres/metabolismo , Poliestirenos/toxicidade , Lipofuscina/metabolismo , Poluentes Ambientais/toxicidade
3.
ACS Appl Mater Interfaces ; 15(35): 41271-41286, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37622208

RESUMO

The ordered and directed functionalization of targeting elements on the surface of nanomaterials for precise tumor therapy remains a challenge. To address the above problem, herein, we adopted a materials-based synthetic biotechnology strategy to fabricate a bioengineered fusion protein of materials-binding peptides and targeting elements, which can serve as a "molecular glue" to achieve a directional and organized assembly of targeting biological macromolecules on the surface of nanocarriers. The hypoxia microenvironment of solid tumors inspired the rapid development of starvation/chemosynergistic therapy; however, the unsatisfied spatiotemporal specific performance hindered its further development in precise tumor therapy. As a proof of concept, a bioengineered fusion protein containing a dendritic mesoporous silicon (DMSN)-binding peptide, and a tumor-targeted and acidity-decomposable ferritin heavy chain 1 (FTH1), was constructed by fusion expression and further assembled on the surface of DMSN companying with the insertion of hypoxia-activated prodrug tirapazamine (TPZ) and glucose oxidase (GOX) to establish a nanoreactor for precise starvation/chemosynergistic tumor therapy. In this context, the as-prepared therapeutic nanoreactors revealed obvious tumor-specific accumulation and an endocytosis effect. Next, the acidic tumor microenvironment triggered the structural collapse of FTH1 and the subsequent release of GOX and TPZ, in which GOX-mediated catalysis cut off the nutrition supply to realize starvation therapy based on the consumption of endogenous glucose and further provided an exacerbated hypoxia environment for TPZ in situ activation to initiate tumor chemotherapy. More significantly, the presence of "molecular glue" elevated the tumor-targeting capacity of nanoreactors and further enhanced the starvation/chemosynergistic therapeutic effect remarkably, suggesting that such a strategy provided a solution for the functionality of nanomaterials and facilitated the design of novel targeting nanomedicines. Overall, this study highlights materials-binding peptides as a new type of "molecular glue" and opens new avenues for designing and exploring active biological materials for biological functions and applications.


Assuntos
Engenharia Biomédica , Neoplasias , Humanos , Biotecnologia , Glucose Oxidase , Hipóxia , Nanomedicina , Microambiente Tumoral
4.
J Hazard Mater ; 460: 132426, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683352

RESUMO

The impact of primary metabolites of organophosphate triesters (tri-OPEs), namely, organophosphate diesters (di-OPEs), on the ecology, environment, and humans cannot be ignored. While extensive studies have been conducted on tri-OPEs, research on the environmental occurrence, toxicity, and health risks of di-OPEs is still in the preliminary stage. Understanding the current research status of di-OPEs is crucial for directing future investigations on the production, distribution, and risks associated with environmental organophosphate esters (OPEs). This paper specifically reviews the metabolization process from tri-OPEs to di-OPEs and the occurrence of di-OPEs in environmental media and organisms, proposes typical di-OPEs in different media, and classifies their toxicological and epidemiological findings. Through a comprehensive analysis, six di-OPEs were identified as typical di-OPEs that require prioritized research. These include di-n-butyl phosphate (DNBP), bis(2-butoxyethyl) phosphate (BBOEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), and diphenyl phosphate (DPHP). This review provides new insights for subsequent toxicological studies on these typical di-OPEs, aiming to improve our understanding of their current status and provide guidance and ideas for research on the toxicity and health risks of di-OPEs. Ultimately, this review aims to enhance the risk warning system of environmental OPEs.


Assuntos
Ecologia , Fosfatos , Humanos , Estudos Epidemiológicos , Organofosfatos/toxicidade
5.
Environ Int ; 174: 107875, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36933305

RESUMO

Microbeads used in personal care products have been one of the important sources of microplastics (MPs), and little has been reported on their environmental behaviors and health risks. The characteristics of environmentally persistent free radicals (EPFRs) and the toxicity assessment of MPs (environmentally relevant concentrations) from cosmetics during photoaging remains largely unknown. In this study, the formation of EPFRs on polyethylene (PE) microbeads from facial scrubs under light irradiation and their toxicity were investigated using C. elegans as a model organism. The results suggested that light irradiation induced the generation of EPFRs, which accelerates the aging process and alters the physicochemical properties of PE microbeads. Acute exposure to PE (1 mg/L) at photoaged times of 45-60 d significantly decreased the physiological indicators (e.g., head thrashes, body bends, and brood size). The oxidative stress response and stress-related gene expression were also enhanced in nematodes. The addition of N-acetyl-l-cysteine induced significant inhibition of toxicity and oxidative stress in nematodes exposed to 45-60 d of photoaged PE. The Pearson correlation results showed that the concentration of EPFRs was significantly correlated with physiological indicators, oxidative stress, and related-genes expression in nematodes. The data confirmed that the generation of EPFRs combined with heavy metals and organics contributed to toxicity induced by photoaged PE, and oxidative stress might be involved in regulating adverse effects in C. elegans. The study provides new insight into the potential risks of microbeads released into the environment during photoaging. The findings also highlight the necessity for considering the role of EPFRs formation in evaluating the impacts of microbeads.


Assuntos
Cosméticos , Plásticos , Animais , Microesferas , Caenorhabditis elegans , Radicais Livres , Estresse Oxidativo , Microplásticos/toxicidade , Polietileno , Cosméticos/toxicidade , Cosméticos/química
6.
Environ Pollut ; 332: 121954, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271365

RESUMO

Although polystyrene (PS)-induced toxicity in organisms has been documented, adverse effects on lifespan and molecular mechanisms underlying microbial colonization of PS remain elusive. Herein, physicochemical properties of biofilm-developed PS (B-PS) incubated in wastewater were altered compared with virgin PS (V-PS). Bacterial community adherence to the B-PS surface were also impacted. Acute exposure to V-PS (100 µg/L) and B-PS (10 µg/L) significantly altered the mean lifespan and lipofuscin accumulation of Caenorhabditis elegans, suggesting that B-PS exposure at environmentally relevant concentrations could more severely accelerate the aging process than V-PS. Generation of ROS, gst-4::GFP expression, and oxidative stress-related gene expression were significantly altered following B-PS exposure. Moreover, B-PS exposure increased the nucleus-cytoplasm translocation of DAF-16 and altered the expression of genes encoding the insulin/IGF1 signaling (IIS) pathway. Compared with wild-type nematodes, the daf-16 mutation markedly enhanced lipofuscin accumulation and reduced mean lifespan, whereas daf-2, age-1, pdk-1, and akt-1 mutants could recover lipofuscin accumulation and mean lifespan. Accordingly, B-PS exposure accelerated the aging process associated with oxidative stress and the IIS pathway, and the DAF-2-AGE-1-PDK-1-AKT-1-DAF-16 signaling cascade may play a critical role in regulating the lifespan of C. elegans. This study provides new insights into the potential risks associated with microbial colonization of microplastics.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Águas Residuárias , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lipofuscina/metabolismo , Estresse Oxidativo , Longevidade , Transdução de Sinais , Poliestirenos/metabolismo , Envelhecimento
7.
J Hazard Mater ; 446: 130643, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586333

RESUMO

Triphenyl phosphate (TPHP) is a widely used aryl organophosphate flame retardant (OPFR) that has attracted attention due to its frequent detection in the environment and living organisms. To date, the reproductive toxicity of TPHP has been investigated in organisms, but its molecular mechanisms are not fully understood. Caenorhabditis elegans (C. elegans) is the ideal animal for the study of reproductive toxicity following environmental pollutants, with short generation times, intact reproductive structures, and hermaphroditic fertilization. This study aimed to explore the reproductive dysfunction and molecular mechanisms induced by TPHP exposure in C. elegans. Specifically, exposure to TPHP resulted in a reduction in the number of eggs laid and developing embryos in utero, an increase in the number of apoptotic gonadal cells, and germ cell cycle arrest. The JNK signaling pathway is a potential pathway inducing reproductive toxicity following TPHP exposure based on transcriptome sequencing (RNA-seq). Moreover, TPHP exposure induced down-regulation of vhp-1 and kgb-2 gene transcription levels, and the knockout of vhp-1 and kgb-2 in the mutant strains exhibited more severe toxicity in apoptotic gonad cells, embryos, and eggs developing in utero, suggesting that vhp-1 and kgb-2 genes play a crucial role in TPHP-induced reproductive toxicity. Our data provide convergent evidence showing that TPHP exposure results in reproductive dysfunction through the JNK signaling pathway and improve our understanding of the ecotoxicity and toxicological mechanisms of aryl-OPFRs.


Assuntos
Caenorhabditis elegans , Retardadores de Chama , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sistema de Sinalização das MAP Quinases , Organofosfatos/toxicidade , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo
8.
Environ Int ; 168: 107482, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998411

RESUMO

As a major alternative to traditional brominated flame retardants (BFRs), decabromodiphenyl ethane (DBDPE) is widely used and has been commonly detected in various environmental media and organisms. Few previous studies have focused on DBDPE-induced locomotion neurotoxicity, and the exact molecular mechanisms and related health risks remain unclear. In this study, we first analyzed the locomotion indicators of nematodes following DBDPE exposure, demonstrated that DBDPE caused locomotion neurotoxicity, and identified that a series of the transthyretin (TTR)-like genes participated in the regulation of nematode motility by transcriptomic analysis, gene transcription validation and TTR-like mutant verification. Subsequently, this study demonstrated that DBDPE exacerbated amyloid-beta (Aß) deposition by repressing TTR/TTR-like gene transcription based on Alzheimer's disease (AD) model nematodes and human SH-SY5Y cells following DBDPE exposure and further revealed that DBDPE reduced the binding between TTR and Aß by competing with the strand G region sites on the TTR/TTR-like protein, ultimately exacerbating Aß deposition and the risk of AD. In short, our study demonstrated that DBDPE induced locomotion neurotoxicity and potential AD risks through intensifying Aß deposition by inhibiting TTR/TTR-like proteins, providing reference support for risk management and policy formulation related to DBDPE and similarly structured novel BFRs.

9.
J Hazard Mater ; 434: 128913, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452989

RESUMO

Chlorophenols are difficult to degrade and biohazardous in the natural environment. This study demonstrated that humic acid (HA) could promote Fe3S4 activation of peroxymonosulfate (PMS) to degrade 2,4,6-trichlorophenol (TCP), the degradation efficiency of TCP was increased by 33%. The system of Fe3S4-HA/PMS produced more reactive oxygen species, and •OH was the dominant ROS. The genealogy of iron oxides together with S0 on the Fe3S4 surface inhibited PMS activation leading to the significant reduction of TCP degraded (< 70%). These problems could be solved successfully through introducing HA, which facilitated electron transfer and increased the continuous release of iron ions by 2 times. In accordance with the determined density functional theory (DFT), the degradation pathway was put forward, which indicated that TCP dechlorination and oxidation to 2,6-dichloro-1,4-benzoquinone constituted the main degradation pathway. Furthermore, the intermediates that were produced in the main degradation processes of TCP showed lower toxicity than TCP according to results that were obtained utilizing the calculations of quantitative structure-activity relationship (QSAR) together with Toxicity Estimation Software Tool (TEST). Thus, the Fe3S4-HA/PMS system was demonstrated to be an efficient and safe technology for organic pollutant degradation in contaminated groundwater and surface water environments.


Assuntos
Clorofenóis , Substâncias Húmicas , Ferro , Modelos Teóricos , Peróxidos , Sulfetos
10.
J Hazard Mater ; 425: 128043, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34906867

RESUMO

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has received concerns due to its frequent detection in environmental media and biological samples. Our previous study has indicated TDCPP reduced the lifespan of Caenorhabditis elegans (C. elegans) by triggering an unconventional insulin/insulin-like growth factor signaling (IIS) pathway. This study continued to investigate the possible deleterious effects of TDCPP relating to longevity regulation signal pathways and biological processes. Specifically, this study uniquely performed small RNA transcriptome sequencing (RNA-seq), focusing on the underlying mechanisms of TDCPP-reduced the longevity of C. elegans in-depth in microRNAs (miRNAs). Based on Small RNA-seq results and transcript levels of mRNA involved in the unconventional IIS pathway, a small interaction network of miRNAs-mRNAs following TDCPP exposure in C. elegans was preliminarily established. Among them, up-regulated miR-48 and miR-84 (let-7 family members) silence the mRNA of daf-16 (the crucial member of the FoxO family and pivotal regulator in longevity) via post-transcription and translation dampening abilities, further inhibit its downstream target metallothionein-1 (mtl-1), and ultimately contributed to the reduction of nematode longevity and locomotion behaviors. Meanwhile, the high binding affinities of TDCPP with miRNAs cel-miR-48-5p and cel-miR-84-5p strongly support their participation in the regulation of nematode mobility and longevity. These findings provide a comprehensive analysis of TDCPP-reduced longevity from the perspective of miRNAs.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Insulina , Fator de Crescimento Insulin-Like I , Longevidade , MicroRNAs/genética , Fosfatos , Transdução de Sinais
11.
Environ Pollut ; 311: 119927, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970344

RESUMO

Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.


Assuntos
Poluentes Ambientais , Metais Pesados , Animais , Caenorhabditis elegans , Poluentes Ambientais/toxicidade , Epigênese Genética , Humanos , Metais Pesados/toxicidade , Reprodução
12.
Mol Biotechnol ; 61(3): 200-208, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30649663

RESUMO

Carbonic anhydrases (CAs) are a class of zinc-containing metalloenzymes that can reversibly catalyse the hydration reaction of carbon dioxide. Antarctic algae are the most critical component of the Antarctic ecosystem; algae can enter the carbon cycle food chain by fixing carbon dioxide from the air. In this study, the complete open reading frames (ORFs) of CA1 (GenBank ID KY826431), CA2 (GenBank ID KY826432), and CA3 (GenBank ID KY826433), encoding CAs in the Antarctic ice microalga Chlamydomonas. sp. ICE-L, were successfully cloned using reverse transcription-polymerase chain reaction (RT-PCR). In addition, the expression patterns of CAs under blue light, under UV light, and in the dark were determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The CA1, CA2, and CA3 ORFs encode proteins of 376, 430, and 419 amino acids, respectively. Phylogenetic analysis revealed that all amino acid sequences showed high homology with those of C. sp. ICE-L. There are six types of algal CAs; we hypothesised that the CAs studied here are most likely α-CAs. Expression analysis showed that the transcription level of the CAs was influenced by both UV light and blue light. These findings provide additional insight into the molecular mechanisms of CAs and will accelerate the development of CAs for applications in agriculture and environmental governance.


Assuntos
Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Chlamydomonas/enzimologia , Clonagem Molecular/efeitos dos fármacos , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Anidrases Carbônicas/química , Chlamydomonas/genética , Evolução Molecular , Modelos Moleculares , Fases de Leitura Aberta , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
13.
Mutat Res ; 809: 13-19, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625375

RESUMO

The psychrophilic microalga, Chlamydomonas sp. ICE-L, isolated from floating ice in the Antarctic, one of the most highly UV exposed ecosystems on Earth, displays an efficient DNA photorepair capacity. Here, the first known (6-4) photolyase gene (6-4CiPhr) from C. sp. ICE-L was identified. The 6-4CiPhr encoded 559-amino acid polypeptide with a pI of 8.86, and had a predicted Mw of 64.2 kDa. Real-time PCR was carried out to investigate the response of 6-4CiPhr to UVB exposure. The transcription of 6-4CiPhr was up-regulated continuously within 6 h, achieving a maximum of 62.7-fold at 6 h. Expressing 6-4CiPhr in a photolyase-deficient Escherichia coli strain improved survival rate of the strain. In vitro activity assays of purified protein demonstrated that 6-4CiPhr was a photolyase with 6-4PP repair activity. These findings improve understanding of photoreactivation mechanisms of (6-4) photolyase.


Assuntos
Chlamydomonas , Desoxirribodipirimidina Fotoliase , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Plantas , Transcrição Gênica/efeitos da radiação , Raios Ultravioleta , Regulação para Cima/efeitos da radiação , Chlamydomonas/enzimologia , Chlamydomonas/genética , Desoxirribodipirimidina Fotoliase/biossíntese , Desoxirribodipirimidina Fotoliase/química , Desoxirribodipirimidina Fotoliase/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA