Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(29): e2314004, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760018

RESUMO

Transfer printing techniques based on tunable and reversible adhesives enable the heterogeneous integration of materials in desired layouts and are essential for developing both existing and envisioned electronic systems. Here, a novel tunable and reversible adhesive of liquid metal ferrofluid pillars for developing an efficient magnetically actuated noncontact transfer printing is reported. The liquid metal ferrofluid pillars offer the appealing advantages of gentle contact force by minimizing the preload effect and exceptional shape adaptability by maximizing the interfacial contact area due to their inherent fluidity, thus enabling a reliable damage-free pickup. Moreover, the liquid metal ferrofluid pillars harness the rapid stiffness increase and shape change with the magnetic field, generating an instantaneous ejection force to achieve a receiver-independent noncontact printing. Demonstrations of the adhesive of liquid metal ferrofluid pillars in transfer printing of diverse objects with different shapes, materials and dimensions onto various substrates illustrate its great potential in deterministic assembly.

2.
Adv Mater ; 35(14): e2205326, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36037508

RESUMO

Flexible electronics is an emerging field of research involving multiple disciplines, which include but not limited to physics, chemistry, materials science, electronic engineering, and biology. However, the broad applications of flexible electronics are still restricted due to several limitations, including high Young's modulus, poor biocompatibility, and poor responsiveness. Innovative materials aiming for overcoming these drawbacks and boost its practical application is highly desirable. Hydrogel is a class of 3D crosslinked hydrated polymer networks, and its exceptional material properties render it as a promising candidate for the next generation of flexible electronics. Here, the latest methods of synthesizing advanced functional hydrogels and the state-of-art applications of hydrogel-based flexible electronics in various fields are reviewed. More importantly, the correlation between properties of the hydrogel and device performance is discussed here, to have better understanding of the development of flexible electronics by using environmentally responsive hydrogels. Last, perspectives on the current challenges and future directions in the development of hydrogel-based multifunctional flexible electronics are provided.

3.
Adv Sci (Weinh) ; 9(24): e2202549, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661444

RESUMO

Reconfigurability of a device that allows tuning of its shape and stiffness is utilized for personal electronics to provide an optimal mechanical interface for an intended purpose. Recent approaches in developing such transformative electronic systems (TES) involved the use of gallium liquid metal, which can change its liquid-solid phase by temperature to facilitate stiffness control of the device. However, the current design cannot withstand excessive heat during outdoor applications, leading to undesired softening of the device when the rigid mode of operation is favored. Here, a gallium-based TES integrated with a flexible and stretchable radiative cooler is presented, which offers zero-power thermal management for reliable rigid mode operation in the hot outdoors. The radiative cooler can both effectively reflect the heat transfer from the sun and emit thermal energy. It, therefore, allows a TES-in-the-air to maintain its temperature below the melting point of gallium (29.8 â„ƒ) under hot weather with strong sun exposure, thus preventing unwanted softening of the device. Comprehensive studies on optical, thermal, and mechanical characteristics of radiative-cooler-integrated TES, along with a proof-of-concept demonstration in the hot outdoors verify the reliability of this design approach, suggesting the possibility of expanding the use of TES in various environments.

4.
Micromachines (Basel) ; 12(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201506

RESUMO

As one of the most important prosthetic implants for amputees, current commercially available prosthetic hands are still too bulky, heavy, expensive, complex and inefficient. Here, we present a study that utilizes the artificial tendon to drive the motion of fingers in a biomimetic prosthetic hand. The artificial tendon is realized by combining liquid crystal elastomer (LCE) and liquid metal (LM) heating element. A joule heating-induced temperature increase in the LCE tendon leads to linear contraction, which drives the fingers of the biomimetic prosthetic hand to bend in a way similar to the human hand. The responses of the LCE tendon to joule heating, including temperature increase, contraction strain and contraction stress, are characterized. The strategies of achieving a constant contraction stress in an LCE tendon and accelerating the cooling for faster actuation are also explored. This biomimetic prosthetic hand is demonstrated to be able to perform complex tasks including making different hand gestures, holding objects of different sizes and shapes, and carrying weights. The results can find applications in not only prosthetics, but also robots and soft machines.

5.
Research (Wash D C) ; 2021: 9846036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34396138

RESUMO

Cutting-edge technologies of stretchable, skin-mountable, and wearable electronics have attracted tremendous attention recently due to their very wide applications and promising performances. One direction of particular interest is to investigate novel properties in stretchable electronics by exploring multifunctional materials. Here, we report an integrated strain sensing system that is highly stretchable, rehealable, fully recyclable, and reconfigurable. This system consists of dynamic covalent thermoset polyimine as the moldable substrate and encapsulation, eutectic liquid metal alloy as the strain sensing unit and interconnects, and off-the-shelf chip components for measuring and magnifying functions. The device can be attached on different parts of the human body for accurately monitoring joint motion and respiration. Such a strain sensing system provides a reliable, economical, and ecofriendly solution to wearable technologies, with wide applications in health care, prosthetics, robotics, and biomedical devices.

6.
Sci Adv ; 7(7)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568483

RESUMO

Thermoelectric generators (TEGs) are an excellent candidate for powering wearable electronics and the "Internet of Things," due to their capability of directly converting heat to electrical energy. Here, we report a high-performance wearable TEG with superior stretchability, self-healability, recyclability, and Lego-like reconfigurability, by combining modular thermoelectric chips, dynamic covalent polyimine, and flowable liquid-metal electrical wiring in a mechanical architecture design of "soft motherboard-rigid plugin modules." A record-high open-circuit voltage among flexible TEGs is achieved, reaching 1 V/cm2 at a temperature difference of 95 K. Furthermore, this TEG is integrated with a wavelength-selective metamaterial film on the cold side, leading to greatly improved device performance under solar irradiation, which is critically important for wearable energy harvesting during outdoor activities. The optimal properties and design concepts of TEGs reported here can pave the way for delivering the next-generation high-performance, adaptable, customizable, durable, economical, and eco-friendly energy-harvesting devices with wide applications.

7.
Sci Adv ; 6(45)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33158869

RESUMO

Wearable electronics can be integrated with the human body for monitoring physical activities and health conditions, for human-computer interfaces, and for virtual/augmented reality. We here report a multifunctional wearable electronic system that combines advances in materials, chemistry, and mechanics to enable superior stretchability, self-healability, recyclability, and reconfigurability. This electronic system heterogeneously integrates rigid, soft, and liquid materials through a low-cost fabrication method. The properties reported in this wearable electronic system can find applications in many areas, including health care, robotics, and prosthetics, and can benefit the well-being, economy, and sustainability of our society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA