Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(23): 30312-30322, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33590392

RESUMO

In order to endow alkaline Ca-bentonite (ACB) with magnetic separation ability, simultaneously obtain better magnetic stability and stronger removal capacity of heavy metal cations; magnetic alkaline Ca-bentonite/carboxymethylcellulose-chitosan film (MACB/C-C) was prepared by organic modification of magnetic alkaline Ca-bentonite (MACB) using non-toxic carboxymethylcellulose and chitosan. Textural characterization results revealed that magnetic Fe3O4 nanoparticles were successfully immobilized on ACB and modified with C-C. The functionalized layer of C-C concurrently enhanced the stability of Fe3O4 and removal performances of heavy metal cations. Adsorption results indicated that MACB/C-C exhibited thorough separation from aqueous solution and greater uptake ability for Pb(II) and Cd(II) (483 mg·g-1 and 123 mg·g-1) than the nascent MACB (335 mg·g-1 and 76 mg·g-1), respectively, at pH 5 and 25 °C temperature. The adsorption of Pb(II) and Cd(II) on MACB/C-C mainly occurred via surface precipitation and complexation when pH > 2. MACB/C-C could be efficiently recycled with marginal decrease in adsorption capacity. The current approach credited to the convenient operation, simplified synthesis, and high efficiency of MACB/C-C could be deemed as a promising alternative for the removal of heavy metal cations from wastewater.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Bentonita , Cádmio , Carboximetilcelulose Sódica , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA