Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 143(11): 996-1005, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37992230

RESUMO

ABSTRACT: Genomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth. Moreover, inhibiting ABL1 reduces the HR activity and genomic instability caused by melphalan, a chemotherapeutic agent used in MM treatment, and increases melphalan's efficacy and cytotoxicity in vivo in a subcutaneous tumor model. In these tumors, nilotinib inhibits endogenous as well as melphalan-induced HR activity. These data demonstrate that inhibiting ABL1 using the clinically approved drug nilotinib reduces MM cell growth, reduces genomic instability in live cell fraction, increases the cytotoxicity of melphalan (and similar chemotherapeutic agents), and can potentially prevent or delay progression in patients with MM.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Melfalan/farmacologia , Instabilidade Genômica , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Angiogenesis ; 27(2): 125-127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532037

RESUMO

Connective tissue serves as a framework for other tissues and organs, supporting their functions, shielding them from harmful factors, and aiding repair. In COVID-19, damaged endothelial cells (ECs), increased endothelial permeability, and thrombi contribute to the connective tissue disorders. Even post-recovery, the damage to ECs and connective tissues persists, resulting in long COVID. Individuals with connective tissue disorders are prone to developing severe COVID-19 and experiencing long COVID symptoms. It is advised that these patients receive at least three vaccine doses, undergo early prophylactic antithrombotic therapy during acute COVID-19, and maintain prophylactic anticoagulant treatment in cases of long COVID.


Assuntos
COVID-19 , Cicatrização , Humanos , Células Endoteliais , Síndrome de COVID-19 Pós-Aguda , COVID-19/complicações , Tecido Conjuntivo
3.
Angiogenesis ; 27(1): 5-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37103631

RESUMO

The world continues to contend with COVID-19, fueled by the emergence of viral variants. At the same time, a subset of convalescent individuals continues to experience persistent and prolonged sequelae, known as long COVID. Clinical, autopsy, animal and in vitro studies all reveal endothelial injury in acute COVID-19 and convalescent patients. Endothelial dysfunction is now recognized as a central factor in COVID-19 progression and long COVID development. Different organs contain different types of endothelia, each with specific features, forming different endothelial barriers and executing different physiological functions. Endothelial injury results in contraction of cell margins (increased permeability), shedding of glycocalyx, extension of phosphatidylserine-rich filopods, and barrier damage. During acute SARS-CoV-2 infection, damaged endothelial cells promote diffuse microthrombi and destroy the endothelial (including blood-air, blood-brain, glomerular filtration and intestinal-blood) barriers, leading to multiple organ dysfunction. During the convalescence period, a subset of patients is unable to fully recover due to persistent endothelial dysfunction, contributing to long COVID. There is still an important knowledge gap between endothelial barrier damage in different organs and COVID-19 sequelae. In this article, we mainly focus on these endothelial barriers and their contribution to long COVID.


Assuntos
COVID-19 , Doenças Vasculares , Animais , Humanos , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Células Endoteliais/fisiologia
4.
Gastroenterology ; 165(2): 357-373, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37178737

RESUMO

BACKGROUND & AIMS: The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS: An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS: Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS: Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.


Assuntos
Adenocarcinoma , Resistencia a Medicamentos Antineoplásicos , Masculino , Animais , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Recombinação Homóloga , Ciclo Celular , Instabilidade Genômica , Genômica , Instabilidade Cromossômica/genética , Desoxirribonucleases/genética , Evolução Molecular
5.
Blood Cells Mol Dis ; 96: 102666, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35567997

RESUMO

The link between hyperuricemia (HUA) and the risk of venous thromboembolism (VTE) has been well established. However, the mechanisms of thrombus generation and the effect of HUA on procoagulant activity (PCA) of erythrocytes remain unclear no matter in uremia or hyperuricemia. Here, phosphatidylserine (PS) exposure, microparticles (MPs) release, cytosolic Ca2+, TMEM16F expression, reactive oxygen species (ROS) and lipid peroxidation of erythrocyte were detected by flow cytometer. PCA was assessed by coagulation time, purified coagulation complex and fibrin production assays. The fibrin formation was observed by scanning electron microscopy (SEM). We found that PS exposure, MPs generation, TMEM16F expression and consequent PCA of erythrocyte in HUA patients significantly increased compared to those in healthy volunteers. Furthermore, high UA induced PS exposure, and MPs release of erythrocyte in concentration and time-dependent manners in vitro, which enhanced the PCA of erythrocyte and was inhibited by lactadherin, a PS inhibitor. Additionally, using SEM, we also observed compact fibrin clots with highly-branched networks and thin fibers supported by red blood cells (RBCs) and RBC-derived MPs (RMPs). Importantly, we demonstrated UA enhanced the production of ROS and lipid peroxidation and reduced the generation of glutathione (GSH) of erythrocyte, which enhanced TMEM16F activity and followed PS externalization and RMPs formation. Collectively, these results suggest that Ca2+-dependent TMEM16F activation may be responsible for UA-induced PS exposure and MPs release of RBC, which thereby contribute to the prothrombotic risk in HUA.

6.
FASEB J ; 35(9): e21808, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34390515

RESUMO

The link between serum uric acid (SUA) and the risk of venous thromboembolism (VTE) is well established. Recent data suggested a causative role of UA in endothelial cells (ECs) dysfunction. However, the molecular mechanism of high UA on thrombogenesis is unknown. We investigate whether high UA induce phosphatidylserine (PS) externalization and microparticle (MP) shedding in cultured EC, and contribute to UA-induced hypercoagulable state. In the present study, we demonstrate that UA induces PS exposure and EMP release of EC in a concentration- and time-dependent manner, which enhances the procoagulant activity (PCA) of EC and inhibited over 90% by lactadherin in vitro. Furthermore, hyperuricemic rat model was used to evaluate the development of thrombi following by flow stasis in the inferior vena cava (IVC). Hyperuricemia group is more likely to form large and hard thrombi compared with control. Importantly, we found that TMEM16F expression is significantly upregulated in UA-treated EC, which is crucial for UA-induced PS exposure and MP formation. Additionally, UA increases the generation of reactive oxygen species (ROS), lipid peroxidation, and cytosolic Ca2+ concentration in EC, which might contribute to increased TMEM16F expression. Using confocal microscopy, we also observed disruption of the actin cytoskeleton, suggesting that depolymerization of actin filaments might be required for TMEM16F activation and followed by PS exposure and membrane blebbing in UA-treated EC. Our results demonstrate a thrombotic role of EC in hyperuricemia through TMEM16F-mediated PS exposure and MPs release.


Assuntos
Anoctaminas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Células Endoteliais/metabolismo , Hiperuricemia/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperuricemia/sangue , Peroxidação de Lipídeos/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Ácido Úrico/sangue
7.
FASEB J ; 35(9): e21835, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34449927

RESUMO

Circulating neutrophil extracellular traps (NETs) resistant to t-PA have not been studied completely although NETs in thrombi may contribute to tissue plasminogen activator (t-PA) resistance. This research intended to elucidate whether circulating NETs are associated with t-PA resistance and the underlying mechanism. The levels of NETs were detected in the circulating neutrophils, ischemic brain tissue of acute ischemic stroke (AIS) patients, and transient middle cerebral artery occlusion (tMCAO) models. NET formation in blood, thrombi, and ischemic brain tissue of mice were analyzed by immunofluorescence. Exposed phosphatidylserine (PS) was assessed using flow cytometry and confocal microscopy. Procoagulant activity (PCA) was evaluated using fibrin formation assays, thrombin, and purified coagulation complex. The plasma levels of NETs in AIS patients were significantly higher than those in healthy individuals. After thrombolysis, a significant increase was noted in NET markers in no-improvement patients, while the changes in improvement patients were not significant. Importantly, NETs were decorated with von Willebrand factor (vWF) and plasminogen activator inhibitor-1 (PAI-1) in the blood and thrombi, which could reverse the fibrinolytic effects. In addition, NETs activated platelets (PLTs) and endothelial cells (ECs), stimulating a procoagulant phenotype and facilitating vWF and PAI-1 release. DNase I, activated protein C (APC), and sivelestat markedly inhibited these effects. Furthermore, targeting NETs protected mice from tMCAO-induced cerebral ischemia, possibly by regulating vWF and PAI-1. In summary, NETs may contribute to t-PA resistance in AIS through activation of PLTs and ECs. Strategies against NETs may present a promising therapeutic approach to improve the thrombolysis efficiency of t-PA in AIS patients.


Assuntos
Isquemia Encefálica/metabolismo , Armadilhas Extracelulares/metabolismo , AVC Isquêmico/metabolismo , Neutrófilos/metabolismo , Acidente Vascular Cerebral/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Idoso , Animais , Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Células Endoteliais/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosfatidilserinas/metabolismo , Trombina/metabolismo , Trombose/metabolismo
8.
Platelets ; 33(7): 955-963, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35081860

RESUMO

Classical myeloproliferative neoplasm (MPN), also known as BCR-ABL-negative MPN, is a clonal disease characterized by abnormal expansion of hematopoietic stem cells. It has been demonstrated that MPN patients are more susceptible to thrombotic events compared to the general population. Therefore, researchers have been exploring the treatment for MPN thrombosis. However, antithrombotic therapies have brought another concern for the clinical management of MPN because they may cause bleeding events. When thrombosis and bleeding, two seemingly contradictory complications, occur in MPN patients at the same time, they will lead to more serious consequences. Therefore, it is a major challenge to achieving the best antithrombotic effect and minimizing bleeding events simultaneously. To date, there has yet been a perfect strategy to meet this challenge and therefore a new treatment method needs to be established. In this article, we describe the mechanism of thrombosis and bleeding events in MPN from the perspective of platelets for the first time. Based on the double-sided role of platelets in MPN, optimal antithrombotic treatment strategies that can simultaneously control thrombosis and bleeding at the same time may be formulated by adjusting the administration time and dosage of antiplatelet drugs. We argue that more attention should be paid to the critical role of platelets in MPN thrombosis and MPN bleeding in the future, so as to better manage adverse vascular events in MPN.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Trombose , Plaquetas , Fibrinolíticos/uso terapêutico , Hemorragia/complicações , Humanos , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/tratamento farmacológico , Neoplasias/complicações , Trombose/complicações
9.
Liver Int ; 41(2): 333-347, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159371

RESUMO

BACKGROUND & AIMS: Patients with obstructive jaundice (OJ) are considered to be prothrombotic with increased risk of thromboembolism complications. The role of neutrophil extracellular traps (NETs) in procoagulant activity (PCA) and thrombosis risk in patients with OJ is unclear. In this study, we investigated NETs formation in OJ patients and the role of elevated unconjugated bilirubin (UCB) in inducing NETs, resulting in enhanced PCA and endothelial injury. METHODS: NETs of OJ patients and healthy controls were measured. NETs PCA was assessed via coagulation time (CT), fibrin formation and purified coagulation complex production assays. Visualization of NETs and mitochondrial reactive oxygen species (MitoROS) were performed with a fluorescence microscope. We further used confocal microscopy to quantify the exposure of phosphatidylserine (PS), fibrin strands and FVa/Xa on Human umbilical vein endothelial cells (HUVECs). RESULTS: Assessment of NETs components levels revealed greater NETs production in OJ patients than in healthy controls. Importantly, OJ-NETs were responsible for enhanced PCA. UCB induced NETs formation via MitoROS accumulation and mitochondrial mobilization. HUVECs cocultured with OJ NETs lost their cell-cell junctions and consequently converted to a procoagulant phenotype. The PCA was attenuated by using DNase I alone or in combination with lactadherin. CONCLUSIONS: Our results suggest that UCB-induced NETs play a prominent role in promoting the hypercoagulable and prothrombotic state in OJ patients. The increased MitoROS accumulation in neutrophils initiated NETosis. NETs are promising targets for indicating or improving coagulation disorders in OJ patients.


Assuntos
Armadilhas Extracelulares , Icterícia Obstrutiva , Trombose , Coagulação Sanguínea , Células Endoteliais , Humanos , Neutrófilos
10.
Blood ; 129(13): 1855-1864, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28053193

RESUMO

Despite routine treatment of unselected acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA), early death because of hemorrhage remains unacceptably common, and the mechanism underlying this complication remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, which involves release of extracellular chromatin. However, the role of promyelocytic extracellular chromatin in APL-associated coagulation remains unclear. Our objectives were to identify the novel role of ATRA-promoted extracellular chromatin in inducing a hypercoagulable and hyperfibrinolytic state in APL and to evaluate its interaction with fibrin and endothelial cells (ECs). Results from a series of coagulation assays have shown that promyelocytic extracellular chromatin increases thrombin and plasmin generation, causes a shortening of plasma clotting time of APL cells, and increases fibrin formation. DNase I but not anti-tissue factor antibody could inhibit these effects. Immunofluorescence staining showed that promyelocytic extracellular chromatin and phosphatidylserine on APL cells provide platforms for fibrin deposition and render clots more resistant to fibrinolysis. Additionally, coincubation assays revealed that promyelocytic extracellular chromatin is cytotoxic to ECs, converting them to a procoagulant phenotype. This cytotoxity was blocked by DNase I by 20% or activated protein C by 31%. Our current results thus delineate the pathogenic role of promyelocytic extracellular chromatin in APL coagulopathy. Furthermore, the remaining coagulation disturbance in high-risk APL patients after ATRA administration may be treatable by intrinsic pathway inhibition via accelerating extracellular chromatin degradation.


Assuntos
Coagulação Sanguínea , Cromatina/patologia , Cromatina/fisiologia , Fibrinólise , Leucemia Promielocítica Aguda/complicações , Células Cultivadas , Cromatina/ultraestrutura , Células Endoteliais , Fibrina/metabolismo , Células Precursoras de Granulócitos/patologia , Humanos , Leucemia Promielocítica Aguda/sangue , Tretinoína/farmacologia , Células Tumorais Cultivadas
11.
J Thromb Thrombolysis ; 48(2): 187-194, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31177487

RESUMO

Relatively little information is known about the definitive role of phosphatidylserine (PS) in the hypercoagulability of heart failure (HF). Our objectives were to assess the levels of PS exposure on microparticles (MPs) and blood cells (BCs) in each group of HF patients and to evaluate their procoagulant activity (PCA). HF patients in each NYHA functional class II-IV (II n = 30, III n = 30, IV n = 30) and healthy controls (n = 25) were enrolled in the present study. PS exposure on MPs, BCs was analyzed with flow cytometry. MPs were classified based on their cellular origin: platelets (CD41a+), neutrophils (CD66b+), endothelial cells (CD31+CD41a-), erythrocytes (CD235a+), monocytes (CD14+), T lymphocytes (CD3+), and B lymphocytes (CD19+). PCA was evaluated by clotting time, extrinsic/intrinsic FXa and prothrombinase production assays, as well as fibrin formation assays. Inhibition assays of PCA of PS+ BCs and MPs were performed by lactadherin. There was no significant difference in MP cellular origin between healthy and HF subjects. However, the total number of PS+ MPs was significantly increased in HF patients compared with healthy controls. In addition, circulating PS+ BCs cooperated with PS+ MPs to markedly shorten coagulation time and dramatically increase FXa/thrombin generation and fibrin formation in each HF group. Moreover, blockade of exposed PS on BCs and MPs with lactadherin inhibited PCA by approximately 80%. Our results lead us to believe that exposing PS on the injured BCs and MPs played a pivotal role in the hypercoagulability state in HF patients.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Células Endoteliais/fisiologia , Insuficiência Cardíaca/sangue , Fosfatidilserinas/metabolismo , Trombofilia/etiologia , Adulto , Idoso , Células Sanguíneas/patologia , Coagulação Sanguínea , Testes de Coagulação Sanguínea , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade
13.
Cell Physiol Biochem ; 45(6): 2411-2420, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29554658

RESUMO

BACKGROUND/AIMS: The mechanisms for thrombosis in diabetic retinopathy (DR) are complex and need to be further elucidated. The purpose of this study was to test phosphatidylserine (PS) exposure on microparticles (MPs) and MP-origin cells from the circulation and to analyze cell-/MP-associated procoagulant activity (PCA) in DR patients. METHODS: PS-positive MPs and cells from healthy controls (n = 20) and diabetic patients (n = 60) were analyzed by flow cytometry and confocal microscopy. Clotting time and purified coagulation complex assays were used to measure PCA. RESULTS: PS exposure on platelets and monocytes was higher in proliferative DR (PDR) patients than in non-PDR patients or controls. The highest levels of MPs (derived from platelets [30%], erythrocytes [13%], leukocytes [28%], and endothelial cells [10%]) were found in patients with PDR. In addition, PS exposure on blood cells and shed MPs in DR patients led to significantly increased FXa and FIIa generation, fibrin formation, and markedly shortened coagulation time. Moreover, lactadherin reduced 70% of PCA by blocking PS, while an anti-tissue factor antibody had a smaller effect. CONCLUSION: Our results confirmed that PCA in DR patients may be partly ascribed to PS exposure and MP release from blood and endothelial cells. Lactadherin may act as an efficient anticoagulant factor in this process.


Assuntos
Células Sanguíneas/patologia , Coagulação Sanguínea , Micropartículas Derivadas de Células/patologia , Retinopatia Diabética/sangue , Retinopatia Diabética/patologia , Células Endoteliais/patologia , Fosfatidilserinas/metabolismo , Adulto , Células Sanguíneas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Estudos de Coortes , Retinopatia Diabética/complicações , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Trombose/sangue , Trombose/etiologia , Trombose/metabolismo , Trombose/patologia
14.
Ann Hematol ; 97(4): 605-616, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29332224

RESUMO

The mechanisms of thrombogenicity in essential thrombocythemia (ET) are complex and not well defined. Our objective was to explore whether phosphatidylserine (PS) exposure on blood cells and endothelial cells (ECs) can account for the increased thrombosis and distinct thrombotic risks among mutational subtypes in ET. Using flow cytometry and confocal microscopy, we found that the levels of PS-exposing erythrocytes, platelets, leukocytes, and serum-cultured ECs were significantly higher in each ET group [JAK2, CALR, and triple-negative (TN) (all P < 0.001)] than those in controls. Among ET patients, those with JAK2 mutations showed higher levels of PS-positive erythrocytes, platelets, neutrophils, and serum-cultured ECs than TN patients or those with CALR mutations, which show similar levels. Coagulation function assays showed that higher levels of PS-positive blood cells and serum-cultured ECs led to markedly shortened coagulation time and dramatically increased levels of FXa, thrombin, and fibrin production. This procoagulant activity could be largely blocked by addition of lactadherin (approx. 70% inhibition). Confocal microscopy showed that the FVa/FXa complex and fibrin fibrils colocalized with PS on ET serum-cultured ECs. Additionally, we found a relationship between D-dimer, prothrombin fragment F1 + 2, and PS exposure. Our study reveals a previously unrecognized link between hypercoagulability and exposed PS on cells, which might also be associated with distinct thrombotic risks among mutational subtypes in ET. Thus, blocking PS-binding sites may represent a new therapeutic target for preventing thrombosis in ET.


Assuntos
Plaquetas/patologia , Endotélio Vascular/patologia , Eritrócitos/patologia , Leucócitos/patologia , Fosfatidilserinas/metabolismo , Trombocitemia Essencial/fisiopatologia , Trombose/etiologia , Adulto , Idoso , Substituição de Aminoácidos , Plaquetas/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Células Cultivadas , China/epidemiologia , Endotélio Vascular/metabolismo , Eritrócitos/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Receptores de Trombopoetina/genética , Receptores de Trombopoetina/metabolismo , Risco , Propriedades de Superfície , Trombocitemia Essencial/genética , Trombocitemia Essencial/metabolismo , Trombocitemia Essencial/patologia , Trombose/epidemiologia
15.
Nephrol Dial Transplant ; 33(12): 2115-2127, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29529237

RESUMO

Background: Relatively little is known about the role of phosphatidylserine (PS) in procoagulant activity (PCA) in patients with diabetic kidney disease (DKD). This study was designed to evaluate whether exposed PS on microparticles (MPs) and MP-origin cells were involved in the hypercoagulability in DKD patients. Methods: DKD patients (n = 90) were divided into three groups based on urinary albumin excretion rate, defined as normoalbuminuria (No-A) (<30 mg/24 h), microalbuminuria (Mi-A) (30-299 mg/24 h) or macroalbuminuria (Ma-A) (>300 mg/24 h), and compared with healthy controls (n = 30). Lactadherin was used to quantify PS exposure on MPs and their original cells. Healthy blood cells (BCs) and human umbilical vein endothelial cells (HUVECs) were treated with 25, 5 or 2.5 mmol/L glucose as well as 3-12 mg/dL uric acid and cells were evaluated by clotting time and purified coagulation complex assays. Fibrin production was determined by turbidity. PS exposure and fibrin strands were observed using confocal microscopy. Results: Using flow cytometry, we found that PS+ MPs (derived from platelets, erythrocytes, HUVECs, neutrophils, monocytes and lymphocytes) and BCs were significantly higher in patients than in controls. Furthermore, the number of PS+ MPs and BCs in patients with Ma-A was significantly higher than in patients with No-A. Similarly, we observed markedly elevated PS exposure on HUVECs cultured with serum from patients with Ma-A versus serum from patients with Mi-A or normoalbuminuria. In addition, circulating PS+ MPs cooperated with PS+ cells, contributing to markedly shortened coagulation time and dramatically increased FXa/thrombin generation and fibrin formation in each DKD group. Confocal microscopy images demonstrated colocalization of fibrin with PS on HUVECs. Moreover, blockade of exposed PS on MPs and cells with lactadherin inhibited PCA by ∼80%. In vitro, BCs and endothelial cells exposed more PS in hypoglycemia or hyperglycemia. Interestingly, reconstitution experiments showed that hypoglycemia-treated cells could be further activated or injured when recovery is obtained reaching hyperglycemia. Moreover, uric acid induced PS exposure on cells (excluding platelets) at concentrations >6 mg/dL. Linear regression analysis showed that levels of PS+ BCs and microparticles were positively correlated with uric acid and proteinuria, but negatively correlated with glomerular filtration rate. Conclusions: Our results suggest that PS+ MPs and MP-origin cells play procoagulant roles in patients with DKD. Blockade of PS could become a novel therapeutic modality for the prevention of thrombosis in these patients.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Nefropatias Diabéticas/patologia , Fosfatidilserinas/farmacologia , Trombofilia/patologia , Trombose/epidemiologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Trombofilia/tratamento farmacológico , Trombofilia/metabolismo
16.
Blood ; 126(10): 1237-44, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26162408

RESUMO

Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbß3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites.


Assuntos
Plaquetas/metabolismo , Fator VIII/metabolismo , Fibrina/metabolismo , Fosfatidilserinas/metabolismo , Ativação Plaquetária/fisiologia , Sítios de Ligação/fisiologia , Células Cultivadas , Humanos , Ligação Proteica/fisiologia
17.
Tumour Biol ; 37(6): 7881-91, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26700666

RESUMO

Hypercoagulability in gastric cancer is a common complication and a major contributor to poor prognosis. This study aimed to determine procoagulant activity of blood cells and microparticles (MPs) in gastric cancer patients. Phosphatidylserine-positive blood cells and MPs, and their procoagulant properties in particular, were assessed in 48 gastric cancer patients and 35 healthy controls. Phosphatidylserine-positive platelets, leukocytes, and MPs in patients with tumor-node-metastasis stage III/IV gastric cancer were significantly higher than those in stage I/II patients or healthy controls. Moreover, procoagulant activity of platelets, leukocytes, and MPs in stage III/IV patients was significantly increased compared to the controls, as indicated by shorter clotting time, higher intrinsic and extrinsic factor tenase, and prothrombinase complex activity. Interestingly, lactadherin, which competes with factors V and VIII to bind phosphatidylserine, dramatically prolonged clotting time of the cells and MPs by inhibiting factor tenase and prothrombinase complex activity. Although anti-tissue factor antibody significantly attenuated extrinsic tenase complex activity of leukocytes and MPs, it only slightly prolonged clotting times. Meanwhile, treatment with radical resection reduced phosphatidylserine-positive platelets, leukocytes, and MPs, and prolonged the clotting times of the remaining cells and MPs. Our results suggest that phosphatidylserine-positive platelets, leukocytes, and MPs contribute to hypercoagulability and represent a potential therapeutic target to prevent coagulation in patients with stage III/IV gastric cancer.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Leucócitos/metabolismo , Fosfatidilserinas/metabolismo , Neoplasias Gástricas/sangue , Trombofilia/etiologia , Adulto , Plaquetas/fisiologia , Micropartículas Derivadas de Células/fisiologia , Feminino , Citometria de Fluxo , Humanos , Leucócitos/fisiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias Gástricas/complicações
18.
Liver Int ; 36(12): 1800-1810, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27206310

RESUMO

BACKGROUND & AIMS: The mechanism of thrombogenicity in cirrhosis is largely unknown. Our objective was to study the relationship between phosphatidylserine on blood cells and endothelial cells and the hypercoagulable state in cirrhotic patients. METHODS: Patients with cirrhosis and healthy controls were studied. Lactadherin was used to quantify phosphatidylserine exposure on blood cells and endothelial cells. Procoagulant activity of cells was evaluated using clotting time and purified coagulation complex assays. Fibrin production was determined by turbidity. Phosphatidylserine exposure, fibrin strands and FVa/Xa binding on cells were observed using confocal microscopy. RESULTS: Our study showed that phosphatidylserine exposure on erythrocytes, platelets and leucocytes in cirrhotic patients increased progressively with Child-Pugh categories. In addition, we found that endothelial cells treated with cirrhotic serum in vitro exposed more phosphatidylserine than those exposed to healthy serum. The exposed phosphatidylserine supported a shorter coagulation time and increased FXa, thrombin and fibrin formation. Notably, phosphatidylserine+ erythrocytes also promoted shorter coagulation times and more fibrin generation in cirrhotic microparticle-depleted plasma, regardless of Child-Pugh categories. Confocal microscopy data showed that the FVa/FXa complex and fibrin fibrils colocalized with phosphatidylserine on endothelial cells. Lactadherin significantly inhibited FXa and thrombin generation and consequently decreased fibrin production in normal or cirrhotic plasma. CONCLUSIONS: These results lead us to believe that exposed phosphatidylserine on activated or injured erythrocytes, platelets, leucocytes and endothelial cells plays an important role in the hypercoagulable state in cirrhotic patients. Thus, blocking phosphatidylserine binding sites might be a new therapeutic target for preventing thrombosis.


Assuntos
Células Sanguíneas/metabolismo , Células Endoteliais/metabolismo , Cirrose Hepática/sangue , Fosfatidilserinas/metabolismo , Trombofilia/etiologia , Adulto , Testes de Coagulação Sanguínea , Plaquetas/metabolismo , Estudos de Casos e Controles , Micropartículas Derivadas de Células , China , Feminino , Fibrina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Trombina/metabolismo
19.
Nephrol Dial Transplant ; 31(5): 747-59, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26673909

RESUMO

BACKGROUND: Relatively little information is available about phosphatidylserine positive (PS(+)) microparticles (MPs) and their originating cells in IgA nephropathy (IgAN) despite well-established intraglomerular coagulation. Our objectives were to detect PS exposure on MP membranes and MP-origin cells and to evaluate its role in procoagulant activity (PCA) and fibrin formation and their association with pathological lesions in the disease. METHODS: Patients with IgAN and healthy controls were studied. Lactadherin was used to quantify PS exposure on MPs and MP-origin cells. PCA of MPs and MP-origin cells was evaluated by clotting time and purified coagulation complex assays. Fibrin production was determined by turbidity. PS exposure, fibrin strands and FVa/Xa binding were observed on MPs/cells using confocal microscopy. RESULTS: Using flow cytometry, we found that IgAN patients had high levels of PS(+) MPs derived from lymphocytes, monocytes, neutrophils, platelets, erythrocytes and endothelial cells (ECs). The PS exposure on MP-origin cells also increased in these patients. MPs and MP-origin cells (leukocytes, platelets and erythrocytes) isolated from IgAN patients and ECs cultured with IgAN serum had a significantly shorter median coagulation time (P < 0.001), higher median intrinsic FXa (P < 0.001) and higher thrombin (P < 0.001) generation than controls. These coagulation functional assays were associated with the glomerular lesions. The lesions were also correlated with glomerular fibrin deposition (all P < 0.05). In the presence of patient MPs or their related cells, fibrin formation peaked faster with a higher maximum turbidity when compared with healthy controls. Blocking PS with lactadherin in the IgAN group prolonged coagulation time to control levels, inhibited the PCA up to 80% and markedly reduced fibrin formation. More importantly, we observed that fibrin strands formed on MPs and ECs in the same regions that bound lactadherin, similar to the FVa/Xa costaining. CONCLUSIONS: We find that high levels of PS(+) MPs and the MP-origin cells are associated with the coagulation process in IgAN, and this may provide a previously unrecognized contribution to intraglomerular coagulation.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Glomerulonefrite por IGA/patologia , Fosfatidilserinas/farmacologia , Adulto , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/patologia , Feminino , Citometria de Fluxo , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/metabolismo , Humanos , Masculino , Trombina/metabolismo
20.
Blood ; 119(10): 2325-34, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22138513

RESUMO

The coagulopathy of acute promyelocytic leukemia (APL) is mainly related to procoagulant substances and fibrinolytic activators of APL blasts, but the fate of these leukemic cells is unknown. The aim of this study was to investigate the removal of APL blasts by macrophages and endothelial cells in vitro and consequent procoagulant and fibrinolytic activity of APL cells. We found that human umbilical vein endothelial cells as well as THP-1 and monocyte-derived macrophages bound, engulfed, and subsequently degraded immortalized APL cell line NB4 and primary APL cells. Lactadherin promoted phagocytosis of APL cells in a time-dependent fashion. Furthermore, factor Xa and prothrombinase activity of phosphatidylserine-exposed target APL cells was time-dependently decreased after incubation with phagocytes (THP-1-derived macrophages or HUVECs). Thrombin production on target APL cells was reduced by 40%-45% after 2 hours of coincubation with phagocytes and 80% by a combination of lactadherin and phagocytes. Moreover, plasmin generation of target APL cells was inhibited 30% by 2 hours of phagocytosis and ∼ 50% by lactadherin-mediated engulfment. These results suggest that engulfment by macrophages and endothelial cells reduce procoagulant and fibrinolytic activity of APL blasts. Lactadherin and phagocytosis could cooperatively ameliorate the clotting disorders in APL.


Assuntos
Coagulação Sanguínea , Células Endoteliais da Veia Umbilical Humana/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Macrófagos/metabolismo , Fagocitose , Adulto , Antígenos de Superfície/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Fator Xa/metabolismo , Feminino , Fibrinolisina/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Leucemia Promielocítica Aguda/patologia , Macrófagos/citologia , Macrófagos/ultraestrutura , Masculino , Microscopia Confocal , Microscopia Eletrônica , Pessoa de Meia-Idade , Proteínas do Leite/metabolismo , Fosfatidilserinas/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA