Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 2): 128691, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072344

RESUMO

The effective delivery and targeted release of drugs within tumor cells are critical factors in determining the therapeutic efficacy of nanomedicine. To achieve this objective, a conjugate of maltose (Mal) and bovine serum albumin (BSA) was synthesized by the Maillard reaction and self-assembled into nanoparticles with active-targeting capabilities upon pH/heating induction. This nanoparticle could be effectively loaded with doxorubicin (DOX) to form stable nanodrugs (Mal-BSA/DOX) that were sensitive to low pH or high glutathione (GSH), thereby achieving a rapid drug release (96.82 % within 24 h). In vitro cell experiments indicated that maltose-modified BSA particles efficiently enhance cellular internalization via glucose transporters (GLUT)-mediated endocytosis, resulting in increased intracellular DOX levels and heightened expression of γ-H2AX. Consequently, these results ultimately lead to selective tumor cells death, as evidenced by an IC50 value of 3.83 µg/mL in HepG2 cells compared to 5.87 µg/mL in 293t cells. The efficacy of Mal-BSA/DOX in tumor targeting therapy has been further confirmed by in vivo studies, as it effectively delivered a higher concentration of DOX to tumor tissue. This targeted delivery approach not only reduces the systemic toxicity of DOX but also effectively inhibits tumor growth (TGI, 75.95 %). These findings contribute valuable insights into the advancement of targeting-albumin nanomedicine and further support its potential in tumor treatment.


Assuntos
Neoplasias Hepáticas , Nanopartículas , Humanos , Maltose , Portadores de Fármacos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Soroalbumina Bovina , Neoplasias Hepáticas/tratamento farmacológico , Glutationa , Concentração de Íons de Hidrogênio
2.
Colloids Surf B Biointerfaces ; 222: 113099, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584448

RESUMO

Poly(lactide-co-glycolide) (PLGA) is promising carrier material for drugs delivery in cancer therapy. However, the slow degradation and lack of targeting have greatly limited the clinical effectiveness of PLGA-based nanomedicines. Herein, we fabricated a hybrid nanosystem (3 P @ He/Pt-NPs) comprising of acid-sensitive polymer (mPOE-PLGA), active-targeting polymer (PBA-PLGA) and therapeutic agents (hemin+cisplatin) to combat these problems. In neutral environment, PEGylation can effectively improve the blood stability and circulation time of hybrid nanosystem. After reaching tumor regions, this nanosystem efficiently increased cellular uptake by dePEGylation and PBA-mediated active-targeting. Furthermore, encapsulated hemin could catalyze the oxygen bubbles generation, which remarkably increasing the drugs release rate. Subsequently, hybrid particles produced a higher cell-killing effect to lung cancer cells (A549) by the combination therapy (chemotherapy and chemodynamic therapy (CDT)). Importantly, cisplatin further amplified CDT effect by inducing H2O2 regeneration owing to the cascade enzymatic reactions, while hemin decreased intracellular glutathione (GSH) level, resulting in a low detoxification effect to cisplatin. Thus, hybrid particles could efficiently inhibit drug-resistant tumor growth and the inhibition rate reached 83.2%. Overall, this hybrid polymer nanosystem improve the drawbacks of PLGA-based nanocarriers, and can realize a cascading enhanced tumor treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Cisplatino/farmacologia , Peróxido de Hidrogênio , Hemina , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA