Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 35(21): 4336-4343, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30957844

RESUMO

MOTIVATION: Complex diseases often involve a wide spectrum of phenotypic traits. Better understanding of the biological mechanisms relevant to each trait promotes understanding of the etiology of the disease and the potential for targeted and effective treatment plans. There have been many efforts towards omics data integration and network reconstruction, but limited work has examined the incorporation of relevant (quantitative) phenotypic traits. RESULTS: We propose a novel technique, sparse multiple canonical correlation network analysis (SmCCNet), for integrating multiple omics data types along with a quantitative phenotype of interest, and for constructing multi-omics networks that are specific to the phenotype. As a case study, we focus on miRNA-mRNA networks. Through simulations, we demonstrate that SmCCNet has better overall prediction performance compared to popular gene expression network construction and integration approaches under realistic settings. Applying SmCCNet to studies on chronic obstructive pulmonary disease (COPD) and breast cancer, we found enrichment of known relevant pathways (e.g. the Cadherin pathway for COPD and the interferon-gamma signaling pathway for breast cancer) as well as less known omics features that may be important to the diseases. Although those applications focus on miRNA-mRNA co-expression networks, SmCCNet is applicable to a variety of omics and other data types. It can also be easily generalized to incorporate multiple quantitative phenotype simultaneously. The versatility of SmCCNet suggests great potential of the approach in many areas. AVAILABILITY AND IMPLEMENTATION: The SmCCNet algorithm is written in R, and is freely available on the web at https://cran.r-project.org/web/packages/SmCCNet/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Reguladoras de Genes , Algoritmos , Neoplasias da Mama , Humanos , Fenótipo , Transdução de Sinais
2.
BMC Bioinformatics ; 18(1): 143, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28253840

RESUMO

BACKGROUND: Heritability of a phenotypic or molecular trait measures the proportion of variance that is attributable to genotypic variance. It is an important concept in breeding and genetics. Few methods are available for calculating heritability for traits derived from high-throughput sequencing. RESULTS: We propose several statistical models and different methods to compute and test a heritability measure for such data based on linear and generalized linear mixed effects models. We also provide methodology for hypothesis testing and interval estimation. Our analyses show that, among the methods, the negative binomial mixed model (NB-fit), compound Poisson mixed model (CP-fit), and the variance stabilizing transformed linear mixed model (VST) outperform the voom-transformed linear mixed model (voom). NB-fit and VST appear to be more robust than CP-fit for estimating and testing the heritability scores, while NB-fit is the most computationally expensive. CP-fit performed best in terms of the coverage of the confidence intervals. In addition, we applied the methods to both microRNA (miRNA) and messenger RNA (mRNA) sequencing datasets from a recombinant inbred mouse panel. We show that miRNA and mRNA expression can be a highly heritable molecular trait in mouse, and that some top heritable features coincide with expression quantitative trait loci. CONCLUSIONS: The models and methods we investigated in this manuscript is applicable and extendable to sequencing experiments where some biological replicates are available and the environmental variation is properly controlled. The CP-fit approach for assessing heritability was implemented for the first time to our knowledge. All the methods presented, as well as the generation of simulated sequencing data under either negative binomial or compound Poisson mixed models, are provided in the R package HeritSeq.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Animais , Genótipo , Modelos Lineares , Camundongos , MicroRNAs/química , MicroRNAs/metabolismo , Fenótipo , Característica Quantitativa Herdável , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
3.
Stat Theory Relat Fields ; 5(4): 316-331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36032779

RESUMO

As a classical problem, covariance estimation has drawn much attention from the statistical community for decades. Much work has been done under the frequentist and the Bayesian frameworks. Aiming to quantify the uncertainty of the estimators without having to choose a prior, we have developed a fiducial approach to the estimation of covariance matrix. Built upon the Fiducial Berstein-von Mises Theorem (Sonderegger and Hannig 2014), we show that the fiducial distribution of the covariate matrix is consistent under our framework. Consequently, the samples generated from this fiducial distribution are good estimators to the true covariance matrix, which enable us to define a meaningful confidence region for the covariance matrix. Lastly, we also show that the fiducial approach can be a powerful tool for identifying clique structures in covariance matrices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA