Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Anal Chem ; 96(14): 5640-5647, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551637

RESUMO

Detection and discrimination of fluoroquinolones (FQs) are crucial for food safety but remain a formidable challenge due to their minor differences in molecular structures and the serious interferences from food matrices. Herein, we propose an afterglow assay for the detection and discrimination of FQs through modulating their room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) properties by a host-guest doping strategy. FQs were doped into the boric acid host, forming boronic anhydride structures and hydrogen bonds, which prompted the RTP and TADF performance of FQs by stabilizing their excited states, preventing triplet exciton quenching, and reducing the energy gap between singlet and triplet states. The FQs can be quantitatively detected through monitoring the afterglow intensity of host-guest systems, as low as 0.25 µg/mL. The differences in the afterglow intensity and emission lifetime allowed accurate discrimination of 11 types of FQs through pattern recognition methods. Aided by the delayed signal detection model of afterglow emission, the background signal and the interferences from food matrices were effectively eliminated, which endow the detection and discrimination of mixed FQs in commercial meat samples, without multiple-step separation processes.


Assuntos
Anidridos , Fluoroquinolonas , Bioensaio , Boro , Alimentos
2.
Mikrochim Acta ; 191(2): 119, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300297

RESUMO

A ratiometric fluorescence platform was developed based on the cobalt oxyhydroxide (CoOOH) nanosheet-modulated fluorescence response of blue emissive copper nanoclusters (Cu NCs) and yellow emissive o-phenylenediamine (OPD). CoOOH nanosheets showed dual function of strong absorption and oxidation ability, which can effectively quench the blue fluorescence of Cu NCs, with an excitation and emission peak maximum at 390 and 450 nm, respectively , and transfer the OPD into yellow fluorescence products, with an excitation and emission peak maximum at 390 and 560 nm, respectively. Upon introducing butyrylcholinesterase (BChE) and its substrates, CoOOH nanosheets were decomposed into Co2+, and malachite green (MG) showed strong inhibition ability to this  process. This resulted in the obvious difference on the ratio of blue and yellow fluorescence recorded on the system in the presence and absence of MG, which was utilized for the quantitative detection of MG, with a limit of detection of 0.140 µM and a coefficient of variation of 3.5%. The fluorescence ratiometric assay showed excellent detection performances in practical sample analysis.


Assuntos
Butirilcolinesterase , Cobalto , Cobre , Óxidos , Fenilenodiaminas , Animais , Corantes de Rosanilina , Peixes
3.
Mikrochim Acta ; 191(6): 304, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710810

RESUMO

Dual-emissive fluorescence probes were designed by integrating porphyrin into the frameworks of UiO-66 for ratiometric fluorescence sensing of amoxicillin (AMX). Porphyrin integrated UiO-66 showed dual emission in the blue and red region. AMX resulted in the quenching of blue fluorescence component, attributable to the charge neutralization and hydrogen bonds induced energy transfer. AMX was detected using (F438/F654) as output signals. Two linear relationships were observed (from 10 to 1000 nM and 1 to 100 µM), with a limit of detection of 27 nM. The porphyrin integrated UiO-66 probe was used to detect AMX in practical samples. This work widens the road for the development of dual/multiple emissive fluorescence sensors for analytical applications, providing materials and theoretical supporting for food, environmental, and human safety.


Assuntos
Amoxicilina , Antibacterianos , Corantes Fluorescentes , Leite , Porfirinas , Espectrometria de Fluorescência , Leite/química , Porfirinas/química , Antibacterianos/análise , Antibacterianos/química , Amoxicilina/análise , Amoxicilina/química , Corantes Fluorescentes/química , Animais , Espectrometria de Fluorescência/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Resíduos de Drogas/análise , Contaminação de Alimentos/análise
4.
Chemistry ; 29(4): e202202652, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36302702

RESUMO

Developing solid luminescent materials with a unity quantum yield and tunable emission color is promising, although it is still a difficult task. A straightforward heat-treatment method has been developed to load 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) into the matrix of boric acid (BA) to produce powders with a near-unity quantum yield and tunable emission color from yellow to green. Our results suggest that the emission of the powders originates from PTCDA, and the tunability of the emission color is caused by the hydrolysis of PTCDA in the alkaline environment. The near-unity quantum yield is attributed to the BA matrix, which confines PTCDA. In addition, the powder also shows excellent thermal stability that allows its application in light-emitting diodes. The above results are important for the development of solid-state luminescent materials for various applications, and also provide a clue for studying the emission properties of luminescent materials.

5.
Chemistry ; 29(13): e202203554, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453732

RESUMO

Selective detection of Al3+ is of great significance both for the benefit of human health and environmental safety considerations. In this work, a sensitive and selective fluorescence assay for Al3+ was proposed based on the green-emissive Cu nanoclusters (Cu NCs). Different from the commonly reported works, the green emissive Cu NCs showed dual emission bands at 450 and 510 nm, attributed to the reaction product between polyvinyl pyrrolidone and ascorbic acid and the Cu core, respectively. Al3+ could induce the aggregation of Cu NCs by forming covalent bonds, which results in the enhancement of photoluminescence intensity. This enhancement phenomenon is rather selective to Al3+ , which endows the detection in real samples. These results provide new insights for the fluorescence mechanisms of metal NCs, which also provided a functional luminescent material for various applications, such as chemical sensing, bioimaging and photoelectric devices.

6.
Chemistry ; 28(61): e202201990, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916261

RESUMO

Producing high performance phosphors using abundant and non-toxic precursors yet straightforward methods are promising but still a challenging task. Herein, highly luminescent and thermally stable phosphors were fabricated through an in situ precipitation synthesis strategy. Sulfur nanodots (S-dots) act as the precursors for precipitation reactions and also provide the luminescent centers. Structural and optical characterization investigations suggest that S-dots are incorporated in the matrix of BaSO4 , and BaSO4 provides passivation effect for the surface ligands or traps of S-dots. This results in the promotion of photoluminescence quantum yield from 23 % to 58 %, and the BaSO4 matrix also leads to the obvious promotion of thermal stability. These merits endow the construction of phosphor-based light-emitting diodes by utilizing the S-dots@BaSO4 hybrid phosphors as a color conversion layer. These research results are significant for developing sulfur-based luminescent materials, and also provide a solid and universal theory to produce high quality phosphors.


Assuntos
Luminescência , Enxofre
7.
Anal Bioanal Chem ; 414(8): 2597-2606, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35166867

RESUMO

Although some ratiometric fluorescent sensors have been reported to detect tetracyclines, most of ratiometric fluorescent sensors were established based on europium ion with a narrow linear range. In this work, a ratiometric fluorescent sensor for tetracyclines detection was established based on the dual-emission lanthanum-doped carbon dots (La-CDs) as probes combining with the characteristic pH-response of tetracyclines. The fluorescence intensity of tetracyclines will be enhanced in high pH, and the emission peak of tetracyclines overlapped with the peak of probes. The superposition effect of tetracyclines and probes at 515 nm greatly improved the sensitivity of the ratiometric fluorescent sensor and widened the detection range, and linear ranges for oxytetracycline (OTC) and tetracycline (TC) were respectively 0.00-805.20 µM and 0.00-1039.50 µM. Moreover, the preparation procedure of the La-CDs was simple and time saving and the coupling agent was not required. A comparison of La-CDs with undoped carbon dots (un-CDs) showed that the optical performance and sensing performance of La-CDs were improved. In addition, a portable paper sensor with La-CDs as probes was preliminarily explored in this work, and the sensor has been applied to detect OTC and TC in pork and fish with satisfactory results.


Assuntos
Pontos Quânticos , Tetraciclinas , Animais , Carbono , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Lantânio , Carne
8.
Mikrochim Acta ; 188(11): 392, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697648

RESUMO

Butyrylcholinesterase (BChE) is an important indicator for clinical diagnosis of liver dysfunction, organophosphate toxicity, and poststroke dementia. Point-of-care testing (POCT) of BChE activity is still a challenge, which is a critical requirement for the modern clinical diagnose. A portable photothermal BChE assay is proposed through modulating the photothermal effects of Cu2O nanoparticles. BChE can catalyze the decomposition of butyrylcholine, producing thiocholine, which further reduce and coordinate with CuO on surface of Cu2O nanoparticle. This leads to higher efficiency of formation of Cu9S8 nanoparticles, through the reaction between Cu2O nanoparticle and NaHS, together with the promotion of photothermal conversion efficiency from 3.1 to 59.0%, under the excitation of 1064 nm laser radiation. An excellent linear relationship between the temperature change and the logarithm of BChE concentration is obtained in the range 1.0 to 7.5 U/mL, with a limit of detection of 0.076 U/mL. In addition, the portable photothermal assay shows strong detection robustness, which endows the accurate detection of BChE in human serum, together with the screening and quantification of organophosphorus pesticides. Such a simple, sensitive, and robust assay shows great potential for the applications to clinical BChE detection and brings a new horizon for the development of temperature based POCT.


Assuntos
Butirilcolinesterase/sangue , Cobre/química , Ensaios Enzimáticos/métodos , Nanopartículas Metálicas/química , Testes Imediatos , Butirilcolinesterase/química , Colina/análogos & derivados , Colina/química , Cobre/efeitos da radiação , Humanos , Raios Infravermelhos , Inseticidas/análise , Inseticidas/química , Limite de Detecção , Nanopartículas Metálicas/efeitos da radiação , Paraoxon/análise , Paraoxon/química , Sulfetos/química , Temperatura
9.
Mikrochim Acta ; 188(9): 294, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34363549

RESUMO

Butyrylcholinesterase (BChE) can modulate the expression level of cholinesterase, which emerges as an important clinical diagnose index. However, the currently reported assays for BChE are suffering from the problem of interferences. A ratiometric fluorescence assay was developed based on the MnO2 nanosheet (NS)-modulated fluorescence of sulfur quantum dots (S-dots) and o-phenylenediamine (OPD). MnO2 NS can not only quench the fluorescence of blue emissive S-dots, but also enhance the yellow emissive OPD by catalyzing its oxidation reactions. Upon introducing BChE and substrate into the system, their hydrolysate can reduce MnO2 into Mn2+, leading to the fluorescence recovery of S-dots and failure of OPD oxidation. BChE activity can be quantitatively detected by recording the change of fluorescence signals in the blue and yellow regions. A linear relationship is observed between the ratio of F435/F560 and the concentration of BChE in the range 30 to 500 U/L, and a limit of detection of 17.8 U/L has been calculated. The ratiometric fluorescence assay shows an excellent selectivity to acetylcholinesterase and tolerance to various other species. The method developed  provides good detection performances in human serum medium and for screening of  inhibitors.


Assuntos
Butirilcolinesterase/química , Compostos de Manganês/química , Fenilenodiaminas/química , Pontos Quânticos/química , Fluorescência , Humanos
10.
Analyst ; 145(15): 5206-5212, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32578586

RESUMO

Butyrylcholinesterase (BChE) activity is an important index for a variety of diseases. In this work, a "turn-on" assay is proposed based on controlling the inner filter effect (IFE) of MnO2 nanosheets (NSs) on sulfur nanodots (S-dots). The fluorescence of S-dots is effectively quenched by the MnO2 NSs, due to the wide overlap of the emission spectrum of S-dots and absorption spectrum of MnO2 NSs, together with the superior light absorption capability of MnO2 NSs. BChE can catalyze acetylthiocholine and produce thiocholine, which effectively decomposes the MnO2 NSs into Mn2+, resulting in the disappearance of the IFE and recovery of fluorescence of S-dots. Two-stage linear relationships between the ratio of fluorescence intensity and concentration of BChE are observed from 0.05 to 10 and from 10 to 500 U L-1. A limit of detection of 0.035 U L-1 is achieved, which is the best performance so far. The as-proposed assay is robust enough for practical detection in human serum, and it can avoid interference from its sister enzyme (acetylcholinesterase) and glutathione at the micromolar level. The presented results provide a clue for the functionalization of S-dots, and offer a powerful tool as an analytic technique for nanomedicine and environmental science.


Assuntos
Compostos de Manganês , Pontos Quânticos , Butirilcolinesterase , Humanos , Óxidos , Enxofre
11.
Angew Chem Int Ed Engl ; 59(25): 9997-10002, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31912582

RESUMO

Sulfur is not normally considered a light-emitting material, even though there have been reports of a dim luminescence of this compound in the blue-to-green spectral region. Now, it is shown how to make red-emissive sulfur by a two-step oxidation approach using elemental sulfur and Na2 S as starting materials, with a high photoluminescence quantum yield of 7.2 %. Polysulfide is formed first and is partially transformed into Na2 S2 O3 in the first step, and then turns back to elemental S in the second step. The elevated temperature and relatively oxygen-deficient environment during the second step transforms Na2 S2 O3 into Na2 SO3 incorporated with oxygen vacancies, thus resulting in the formation of a solid-state powder consisting of elemental S embedded in Na2 SO3 . It shows aggregation-induced emission properties, attributed to the influence of oxygen vacancies on the emission dynamics of sulfur by providing additional lower energy states that facilitate the radiative relaxation of excitons.

12.
Mikrochim Acta ; 187(1): 38, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823079

RESUMO

Luminescent copper nanoclusters (Cu NCs) are chosen to functionalize Ti3C2Tx MXene flakes to form a new kind of nanohybrid. It was applied to the determination of glutathione (GSH) via photoluminescence (PL). The Cu NCs and MXene flakes are in close contact, and the blue PL of the Cu NCs (with excitation/emission peaks at 380/425 nm) is quenched. The addition of GSH triggers the separation of the nanohybrid. This results in the recovery of PL. GSH also promotes the PL of Cu NCs via host-guest interactions. Thus, target recognition, corresponding signal output and further magnification are accomplished in a single step. Under optimum conditions, the nanohybrid can detect GSH in the 5.0 to 100 µM concentration range and with a 3.0 µM detection limit. The assay is very specific and shows high selectivity towards metal ions, small biomolecules, amino acids, and thiol containing molecules. Graphical abstractLuminescent copper nanoclusters are used to functionalize Ti3C2Tx MXene flakes, forming a nanohybrid, which is applied to detect glutathione. Target recognition, signal output and magnification are accomplished in a single step, resulting in high selectivity.

13.
Analyst ; 140(13): 4668-75, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25988666

RESUMO

Solid phase microextraction (SPME), a solvent free technique for sample preparation, has been successfully coupled with GC, GC-MS, and HPLC for environmental analysis. In this work, a method combining solid phase microextraction with surface enhanced Raman spectroscopy (SERS) is developed for detection of polycyclic aromatic hydrocarbons (PAHs). Silver nanoparticle aggregates were deposited on the Ag-Cu fibers via layer-by-layer deposition, which were modified with propanethiol (PTH). The SERS-active SPME fiber was immersed in water directly to extract PAHs and then detected using a portable Raman spectrometer. The pronounced valence vibration of the C-C bond at 1030 cm(-1) was chosen as an internal standard peak for the constant concentration of PTH. The RSD values of the stability and the uniformity of the SERS-active SPME fiber are 2.97% and 5.66%, respectively. A log-log plot of the normalized SERS intensity versus fluoranthene concentration showed a linear relationship (R(2) = 0.95). The detection limit was 7.56 × 10(-10) M and the recovery rate of water samples was in the range of 95% to 115%. The method can also be applied to detection of PAH mixtures, and each component of the mixtures can be distinguished by Raman characteristic peaks. The SERS-active SPME fiber could be further confirmed by GC-MS.


Assuntos
Cobre/química , Nanopartículas Metálicas/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Prata/química , Microextração em Fase Sólida/métodos , Análise Espectral Raman/métodos
14.
Analyst ; 140(8): 2815-22, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25730599

RESUMO

Perchlorate, which causes health concerns because of its effects on the thyroid function, is highly soluble and mobile in the environment. In this study, diethyldithiocarbamate (DDTC)-modified silver nanoplates were fabricated on a copper wire to perform the on-site microextraction and detection of perchlorate. This fiber could be inserted into water or soil to extract perchlorate through electrostatic interaction and then can be detected by a portable Raman spectrometer, owing to its surface-enhanced Raman (SERS) activity. A relatively stable vibrational mode (δ(HCH)(CH3), (CH2)) of DDTC at 1273 cm(-1) was used as an internal standard, which was negligibly influenced by the absorption of ClO4(-). The DDTC-modified Ag/Cu fiber showed high uniformity, good reusability and temporal stability under continuous laser radiation each with an RSD lower than 10%. The qualitative and quantitative detection of perchlorate were also realized. A log-log plot of the normalized SERS intensity against perchlorate concentration showed a good linear relationship. The fiber could be also directly inserted into the perchlorate-polluted soil, and the perchlorate could thereby be detected on site. The detection limit in soil reached 0.081 ppm, which was much lower than the EPA-published safety standard. The recovery of the detection was 105% and comparable with the ion chromatography. This hyphenated method of microextraction with direct SERS detection may find potential application for direct pollutant detection free from complex sample pretreatment.

15.
J Sep Sci ; 38(20): 3494-501, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248873

RESUMO

A simple and selective high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α-ethynyl estradiol) in environmental matrices. For feces samples, solid-liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid-phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed-phase C18 column gradient-eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10(-2) (estrone), 4.11 × 10(-4) (estradiol), 5.2 × 10(-3) (estriol) and 7.18 × 10(-3) µg/L (17α-ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2-105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area.


Assuntos
Estradiol/análise , Estriol/análise , Estrona/análise , Etinilestradiol/análise , Fezes/química , Fluorescência , Água Subterrânea/química , Cromatografia Líquida de Alta Pressão , Extração Líquido-Líquido , Extração em Fase Sólida , Poluição Química da Água/análise
16.
Analyst ; 139(10): 2525-30, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24668444

RESUMO

A disordered silver nanowires membrane combining solid-phase extraction (SPE) with surface-enhanced Raman spectroscopy (SERS) was used for the rapid collection and detection of food contaminants. The membrane was fabricated via filtration of the silver nanowires colloid solution, which was prepared by a solvothermal polyol process. Analytes in 5 mL of liquid phase were concentrated in less than 10 s due to their affinity for the silver nanowires on the filter membrane. The membrane combined the advantages of SPE and SERS technology for the analysis of food safety contaminants. The use of the SERS-active extraction membrane eliminated the procedure of elution, which shortened the time of analysis. It has been shown that the as-prepared membrane had good uniformity and high temporal stability under continuous laser irradiation. Qualitative and quantitative detection of phorate and melamine was further performed based on a flow-through method. The characteristic SERS intensity plotted against phorate and melamine concentrations exhibited a good linear relationship over the concentration range of 2.5 to 10 µg mL(-1) (phorate) and 2.5 to 100 µg mL(-1) (melamine).


Assuntos
Nanofios , Prata/química , Análise Espectral Raman/instrumentação , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Difração de Raios X
17.
Nanoscale ; 16(7): 3492-3497, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265090

RESUMO

Sulfur nanodots (S-dots) have emerged as a promising luminescent material to excel over traditional heavy metal-based quantum dots. However, their relatively low emission efficiency and poor thermal stability in the solid state have limited their wide applications in photoelectric devices. In this work, highly luminescent, with a photoluminescence quantum yield higher than 50%, and thermally stable composites of S-dots were produced through modulating their surface states and aggregation behaviors by introducing pyromellitic dianhydride (PMDA) and benzoyleneurea (BEU), respectively. PMDA eliminated the relatively short-lived surface states and defects on the surface of S-dots and BEU regulated the aggregation states and facilitated the energy transfer from BEU to S-dots. The as-obtained composites also showed significantly improved thermal stability compared to S-dots, aided by the hydrophobic chemical groups and dense matrix of PMDA and BEU, which extended their applications in fabricating light-emitting diodes. Our presented results provide a new approach to produce highly luminescent S-dots, which widen their applications in the fields of bioimaging, sensing, photoelectric devices, and environmental science.

18.
Chem Commun (Camb) ; 60(20): 2760-2763, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38353165

RESUMO

The quantitative detection and discrimination of glutathione (GSH) were achieved based on oxalyl dihydrazide (ODH) decorated sulfur nanodots. ODH resulted in the aggregation and fluorescence quenching of the sulfur nanodots, and GSH selectively triggered fluorescence recovery through forming stronger hydrogen bonds with ODH than other biological thiols.


Assuntos
Corantes Fluorescentes , Compostos de Sulfidrila , Corantes Fluorescentes/química , Glutationa , Enxofre , Fluorescência
19.
World J Microbiol Biotechnol ; 29(10): 1859-67, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23576015

RESUMO

Efficiency on biodegradation of high concentration of nitrobenzene (NB) by peat-phosphate esterified polyvinyl alcohol-embedded NB-degrading bacteria Pseudomonas corrugata was conducted compared to free bacteria cells. Its biodegradation kinetics, reuse ability, degradation effect in the absence of the essential element needed for the growth of bacteria and degradation efficiency of the raw water from the contaminated site were also invested. Results show that the degradation rate when the concentration of NB was at 600, 750, and 900 mg/L reached 91.02, 83.23, and 55.9 %, which was higher than that observed in free bacteria at the same concentration levels. Biodegradation kinetics of the material could be well described by first- and zero-order kinetics when the concentration of NB was at 300, 450 mg/L and 600, 750, 900 mg/L, respectively. Stable degradation activity (stayed at a level of approximately 70 %) was displayed during the 11th repeat-batch experiment. The affect of absence of phosphorus in the medium can be abated ascribed to the addition of peat, which contributes with organic matter and other elements such as nitrogen and phosphorus necessary to maintain metabolically active the microorganisms. Effective biodegradation of the raw water from the experimental site revealed that the material can be a potential candidate for treating NB-contaminated wastewater in the practical setting.


Assuntos
Células Imobilizadas/metabolismo , Nitrobenzenos/metabolismo , Pseudomonas/metabolismo , Biotransformação , Cápsulas , Ésteres , Fosfatos , Álcool de Polivinil
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122886, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210854

RESUMO

A fluorogenic reaction between the chelate of Mn(II)-citric acid and terephthalic acid (PTA) was discovered, which was carried out through heating the aqueous mixture of Mn2+, citric acid and PTA. Detailed investigations indicated the reaction products were 2-hydroxyterephthalic acid (PTA-OH), which was attributed to the reaction between PTA and OH, formed by the triggering of Mn(II)-citric acid in the presence of dissolved O2. PTA-OH showed a strong blue fluorescence, peaked at 420 nm, and the fluorescence intensity presented a sensitive response to pH of the reaction system. Based on these mechanisms, the fluorogenic reaction was used for the detection of butyrylcholinesterase activity, achieving a detection limit of 0.15 U/L. The detection strategy was successfully applied in human serum samples, and it was also extended for the detection of organophosphorus pesticides and radical scavengers. Such a facile fluorogenic reaction and its stimuli-responsive properties offered an effective tool for designing detection pathways in the fields of clinical diagnosis, environmental monitoring and bioimaging.


Assuntos
Butirilcolinesterase , Praguicidas , Humanos , Fluorescência , Compostos Organofosforados , Radical Hidroxila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA