Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(29): 13021-13025, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35748600

RESUMO

Metal-organic framework (MOF) glasses are a fascinating new class of materials, yet their prosperity has been impeded by the scarcity of known examples and limited vitrification methods. In the work described in this report, we applied synergistic stimuli of vapor hydration and thermal dehydration to introduce structural disorders in interpenetrated dia-net MOF, which facilitate the formation of stable super-cooled liquid and quenched glass. The material after stimulus has a glass transition temperature (Tg) of 560 K, far below the decomposition temperature of 695 K. When heated, the perturbed MOF enters a super-cooled liquid phase that is stable for a long period of time (>104 s), across a broad temperature range (26 K), and has a large fragility index of 83. Quenching the super-cooled liquid gives rise to porous MOF glass with maintained framework connectivity, confirmed by EXAFS and PDF analysis. This method provides a fundamentally new route to obtain glassy materials from MOFs that cannot be melted without causing decomposition.

2.
Angew Chem Int Ed Engl ; 61(39): e202207467, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35765853

RESUMO

Three-membered rings (3-rings) are an important structural motif in zeolite chemistry, but their formation remains serendipitous in reticular chemistry when designing zeolitic imidazolate frameworks (ZIFs). Herein, we report a design principle for constructing four new ZIFs, termed ZIF-1001 to -1004, from tetrahedral ZnII centers (T), benzotriazolate (bTZ), and different functionalized benzimidazolates (RbIM) that adopt a new zeolite NPO-type topology built from 3-rings. Two factors were critical for this discovery: i) incorporating the bTZ linker within the structures formed 3-rings due to a ∠(T-bTZ-T) angle of 120-130° reminiscent of the ∠(Ge-O-Ge) angle (130°) observed in germanate zeolite-type structures having 3-rings; and ii) RbIM guided the coordination chemistry of bTZ to bind preferentially in an imidazolate-type mode. This series' ability to selectively capture CO2 from high-humidity flue gas and trap ethane from tail gas during shale gas extraction was demonstrated.

3.
Angew Chem Int Ed Engl ; 60(7): 3417-3421, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33247510

RESUMO

We present a metal docking strategy utilizing the precise spatial arrangement of organic struts as metal chelating sites in a MOF. Pairs of uncoordinated N atoms on adjacent pyrazole dicarboxylate linkers distributed along the rod-shaped Al-O secondary building units in MOF-303 [Al(OH)(C5 H2 O4 N2 )] were used to chelate CuI and AgI with atomic precision and yield the metalated Cu- and Ag-MOF-303 compounds [(CuCl)0.50 Al(OH)(C5 H2 O4 N2 ) and (AgNO3 )0.49 Al(OH)(C5 H2 O4 N2 )]. The coordination geometries of CuI and AgI were examined using 3D electron diffraction and extended X-ray absorption fine structure spectroscopy techniques. The resulting metalated MOFs showed pore sizes matching the size of Xe, thus allowing for binding of Xe from Xe/Kr mixtures with high capacity and selectivity. In particular, Ag-MOF-303 exhibited Xe uptake of 59 cm3 cm-3 at 298 K and 0.2 bar with a selectivity of 10.4, placing it among the highest performing MOFs.

4.
J Am Chem Soc ; 142(6): 2750-2754, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31968944

RESUMO

Construction of thermally and chemically robust metal-organic frameworks (MOFs) is highly desirable for postcombustion CO2 capture from flue gas containing water vapor and other acidic gases. Here we report a strategy based on appending amino groups to the triazolate linkers of MOFs to achieve exceptional chemical stability against aqueous, acidic, and basic conditions. These MOFs exhibit not only CO2/N2 thermodynamic adsorption selectivity as high as 120 but also CO2/H2O kinetic adsorption selectivity up to 70, featuring distinct adsorptive sites at the channel center for CO2 and at the corner for H2O, respectively. The best performing MOF in this series features low regeneration energy, high CO2 capture utility under humid conditions, and decent cycling performance for mimic flue gas.

5.
J Am Chem Soc ; 141(12): 5014-5020, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30860821

RESUMO

The separation of ethane from ethylene is of prime importance in the purification of chemical feedstocks for industrial manufacturing. However, differentiating these compounds is notoriously difficult due to their similar physicochemical properties. High-performance porous adsorbents provide a solution. Conventional adsorbents trap ethylene in preference to ethane, but this incurs multiple steps in separation processes. Alternatively, high-purity ethylene can be obtained in a single step if the adsorbent preferentially adsorbs ethane over ethylene. We herein report a metal-organic framework, MUF-15 (MUF, Massey University Framework), constructed from inexpensive precursors that sequesters ethane from ethane/ethylene mixtures. The productivity of this material is exceptional: 1 kg of MOF produces 14 L of polymer-grade ethylene gas in a single adsorption step starting from an equimolar ethane/ethylene mixture. Computational simulations illustrate the underlying mechanism of guest adsorption. The separation performance was assessed by measuring multicomponent breakthrough curves, which illustrate that the separation performance is maintained over a wide range of feed compositions and operating pressures. MUF-15 is robust, maintains its performance in the presence of acetylene, and is easily regenerated by purging with inert gas or by placing under reduced pressure.

6.
J Am Chem Soc ; 141(7): 3298-3303, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30657673

RESUMO

Guest-dependent dynamics having both crystal contraction and expansion upon inclusion of various guests is uncovered in a 3D covalent organic framework (COF) prepared with a facile and scalable method. A molecular-level understanding of how the framework adjusts the node geometry and molecular configuration to perform significant contraction and large amplitude expansion are resolved through synchrotron in-house powder X-ray diffraction (PXRD) and Rietveld refinements. We found that the COF adopts a contracted phase at ambient conditions upon capturing moisture and is also adaptive upon inclusion of organic solvents, which is highlighted by a large crystal expansion (as large as 50% crystallographic volume increment and a 3-fold channel size enlargement). With this new knowledge of the structural adaptability, the diverse responses and coherent switchability are thereby presented to pave the way to rational design and deliberate control of dynamic COFs.

7.
Angew Chem Int Ed Engl ; 58(16): 5348-5353, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30776186

RESUMO

Positioning a diverse set of building blocks in a well-defined array enables cooperativity amongst them and the systematic programming of functional properties. The extension of this concept to porous metal-organic frameworks (MOFs) is challenging since the installation of multiple components in a well-ordered framework requires careful design of the lattice topology, judicious selection of building blocks, and precise control of the crystallization parameters. Herein, we report how we met these challenges to prepare the first quinary MOF structure, FDM-8, by bottom-up self-assembly from two metals, ZnII and CuI , and three distinct carboxylate- and pyrazolate-based linkers. With a surface area of 3643 m2 g-1 , FDM-8 contains hierarchical pores and shows outstanding methane-storage capacity at high pressure. Furthermore, functional groups introduced on the linkers became compartmentalized in predetermined arrays in the pores of the FDM-8 framework.

8.
J Am Chem Soc ; 139(38): 13300-13303, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28870070

RESUMO

Mesoporous Zn4O(-COO)6-based metal-organic frameworks (MOFs), including UMCM-1, MOF-205, MUF-7a, and the newly synthesized MOFs, termed ST-1, ST-2, ST-3, and ST-4 (ST = ShanghaiTech University), have been systematically investigated for ultrahigh capacity methane storage. Exceptionally, ST-2 was found to have the highest deliverable capacity of 289 cm3STP/cm3 (567 mg/g) at 298 K and 5-200 bar, which surpasses all previously reported records held by porous materials. We illustrate that the fine-tuned mesoporosity is critical in further improving the deliverable capacities at ultrahigh pressure.

9.
Nat Commun ; 14(1): 6164, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789007

RESUMO

Elucidating the synergistic catalytic mechanism between multiple active centers is of great significance for heterogeneous catalysis; however, finding the corresponding experimental evidence remains challenging owing to the complexity of catalyst structures and interface environment. Here we construct an asymmetric TeN2-CuN3 double-atomic site catalyst, which is analyzed via full-range synchrotron pair distribution function. In electrochemical CO2 reduction, the catalyst features a synergistic mechanism with the double-atomic site activating two key molecules: operando spectroscopy confirms that the Te center activates CO2, and the Cu center helps to dissociate H2O. The experimental and theoretical results reveal that the TeN2-CuN3 could cooperatively lower the energy barriers for the rate-determining step, promoting proton transfer kinetics. Therefore, the TeN2-CuN3 displays a broad potential range with high CO selectivity, improved kinetics and good stability. This work presents synthesis and characterization strategies for double-atomic site catalysts, and experimentally unveils the underpinning mechanism of synergistic catalysis.

10.
Nat Commun ; 14(1): 4215, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452038

RESUMO

The enolimine-ketoenamine tautomerism has been utilised to construct 2D covalent organic frameworks (COFs) with a higher level of chemical robustness and superior photoelectronic activity. However, it remains challenging to fully control the tautomeric states and correlate their tautomeric structure-photoelectronic properties due to the mobile equilibrium of proton transfer between two other atoms. We show that symmetry-asymmetry tautomerisation from diiminol to iminol/cis-ketoenamine can be stabilised and switched in a crystalline, porous, and dynamic 3D COF (dynaCOF-301) through concerted structural transformation and host-guest interactions upon removal and adaptive inclusion of various guest molecules. Specifically, the tautomeric dynaCOF-301 is constructed by linking the hydroquinone with a tetrahedral building block through imine linkages to form 7-fold interwoven diamondoid networks with 1D channels. Reversible framework deformation and ordering-disordering transition are determined from solvated to activated and hydrated phases, accompanied by solvatochromic and hydrochromic effects useful for rapid, steady, and visual naked-eye chemosensing.


Assuntos
Estruturas Metalorgânicas , Iminas , Porosidade , Prótons
11.
Nat Commun ; 13(1): 7936, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566293

RESUMO

Molecular recognition is an attractive approach to designing sensitive and selective sensors for volatile organic compounds (VOCs). Although organic macrocycles and cages have been well-developed for recognising organics by their adaptive pockets in liquids, porous solids for gas detection require a deliberate design balancing adaptability and robustness. Here we report a dynamic 3D covalent organic framework (dynaCOF) constructed from an environmentally sensitive fluorophore that can undergo concerted and adaptive structural transitions upon adsorption of gas and vapours. The COF is capable of rapid and reliable detection of various VOCs, even for non-polar hydrocarbon gas under humid conditions. The adaptive guest inclusion amplifies the host-guest interactions and facilitates the differentiation of organic vapours by their polarity and sizes/shapes, and the covalently linked 3D interwoven networks ensure the robustness and coherency of the materials. The present result paves the way for multiplex fluorescence sensing of various VOCs with molecular-specific responses.

12.
Adv Sci (Weinh) ; 9(15): e2200010, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35332693

RESUMO

For heterogeneous catalysts, the active sites exposed on the surface have been investigated intensively, yet the effect of the subsurface-underlying atoms is much less scrutinized. Here, a surface-engineering strategy to dope Ru into the subsurface/surface of Co matrix is reported, which alters the electronic structure and lattice strain of the catalyst surface. Using hydrogen evolution (HER) as a model reaction, it is found that the subsurface doping Ru can optimize the hydrogen adsorption energy and improve the catalytic performance, with overpotentials of 28 and 45 mV at 10 mA cm-2 in alkaline and acidic media, respectively, and in particular, 28 mV in neutral electrolyte. The experimental results and theoretical calculations indicate that the subsurface/surface doping Ru improves the HER efficiency in terms of both thermodynamics and kinetics. The approach here stands as an effective strategy for catalyst design via subsurface engineering at the atomic level.

13.
Chem Sci ; 12(44): 14893-14900, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820105

RESUMO

Stimuli-responsive metal-organic frameworks (MOFs) exhibit dynamic, and typically reversible, structural changes upon exposure to external stimuli. This process often induces drastic changes in their adsorption properties. Herein, we present a stimuli-responsive MOF, 1·[CuCl], that shows temperature dependent switching from a rigid to flexible phase. This conversion is associated with a dramatic reversible change in the gas adsorption properties, from Type-I to S-shaped isotherms. The structural transition is facilitated by a novel mechanism that involves both a change in coordination number (3 to 2) and geometry (trigonal planar to linear) of the post-synthetically added Cu(i) ion. This process serves to 'unlock' the framework rigidity imposed by metal chelation of the bis-pyrazolyl groups and realises the intrinsic flexibility of the organic link.

14.
Chem Commun (Camb) ; 56(97): 15313-15316, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33211037

RESUMO

The mutable structures of metal-organic frameworks (MOFs) allow their use as novel supports for transition metal catalysts. Herein we prepare an iridium bis(ethylene) catalyst bound to the neutral N-donors of a MOF structure and show that the compound is a stable gas phase ethylene hydrogenation catalyst. The data illustrate the need to carefully consider the inner sphere (support) and outer sphere (anion) chemistry.

15.
Chem Asian J ; 14(20): 3552-3556, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30980469

RESUMO

The function of allosteric enzymes can be activated or inhibited through binding of specific effector molecules. Herein, we describe how the skeletal deformation, pore configuration, and ultimately adsorptive behavior of a dynamic metal-organic framework (MOF), (Me2 NH2 )[In(atp)]2 (in which atp=2-aminoterephthalate), are controlled by the allocation and orientation of its counter ions triggered by the inclusion/removal of different guest molecules. The power of such allosteric control in MOFs is highlighted through the optimization of the hydrocarbon separation performance by achieving multiple pore configurations but without altering the chemical composition.

16.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA