RESUMO
PURPOSE: A radiotherapy system with a fixed treatment beam and a rotating patient positioning system could be smaller, more robust and more cost effective compared to conventional rotating gantry systems. However, patient rotation could cause anatomical deformation and compromise treatment delivery. In this work, we demonstrate an image-guided treatment workflow with a fixed beam prototype system that accounts for deformation during rotation to maintain dosimetric accuracy. METHODS: The prototype system consists of an Elekta Synergy linac with the therapy beam orientated downward and a custom-built patient rotation system (PRS). A phantom that deforms with rotation was constructed and rotated within the PRS to quantify the performance of two image guidance techniques: motion compensated cone-beam CT (CBCT) for pre-treatment volumetric imaging and kilovoltage infraction monitoring (KIM) for real-time image guidance. The phantom was irradiated with a 3D conformal beam to evaluate the dosimetric accuracy of the workflow. RESULTS: The motion compensated CBCT was used to verify pre-treatment position and the average calculated position was within -0.3 ± 1.1 mm of the phantom's ground truth position at 0°. KIM tracked the position of the target in real-time as the phantom was rotated and the average calculated position was within -0.2 ± 0.8 mm of the phantom's ground truth position. A 3D conformal treatment delivered on the prototype system with image guidance had a 3%/2 mm gamma pass rate of 96.3% compared to 98.6% delivered using a conventional rotating gantry linac. CONCLUSIONS: In this work, we have shown that image guidance can be used with fixed-beam treatment systems to measure and account for changes in target position in order to maintain dosimetric coverage during horizontal rotation. This treatment modality could provide a viable treatment option when there insufficient space for a conventional linear accelerator or where the cost is prohibitive.
Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Radioterapia Guiada por Imagem/métodos , Algoritmos , Humanos , Imageamento Tridimensional/métodos , Teste de Materiais , Movimento (Física) , Aceleradores de Partículas , Radiometria , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes , RotaçãoRESUMO
PURPOSE: Compared to conventional linacs with rotating gantries, a fixed-beam radiotherapy system could be smaller, more robust and more cost-effective. In this work, we developed and commissioned a prototype x-ray radiotherapy system utilizing a fixed vertical radiation beam and horizontal patient rotation. METHODS: The prototype system consists of an Elekta Synergy linac with gantry fixed at 0° and a custom-built patient rotation system (PRS). The PRS was designed to immobilize patients and safely rotate them about the horizontal axis. The interlocks and emergency stops of the linac and PRS were connected. Custom software was developed to monitor the system status, control the motion of the PRS and modify treatment plans for the fixed-beam configuration. Following installation, the prototype system was commissioned for three-dimensional (3D) conformal therapy based on guidelines specified in AAPM TG-45 and TG-142, with modifications for the fixed-beam geometry made where necessary. RESULTS: The system and control software was tested in a variety of machine states and executed motion, stop and beam gating commands as expected. Interlocks and emergency stops of the linac and PRS were found to correctly stop PRS motion and both kV and MV radiation beams when triggered. For 3D conformal treatments, the prototype system met all AAPM TG-45 and TG-142 specifications for geometric and dosimetric accuracy. Motion of the PRS was within 0.6 ± 0.3 mm and 0.10° ± 0.07° of input values for translation and rotation respectively. The axis of rotation of the PRS was coincident with the radiation beam axis to less than 1 mm. End-to-end treatment verification for 6 MV conformal treatments showed less than 2% difference between planned and delivered dose for all fields. CONCLUSION: In this work, we have developed and commissioned a radiotherapy system that utilizes a fixed vertical radiation beam and horizontal patient rotation. This system is a proof-of-concept prototype for a fixed-beam treatment system without a rotating gantry. Fixed-beam systems that are smaller and more cost-effective could help in improving global access to radiotherapy.