RESUMO
Microsatellites are highly mutable sequences that can serve as markers for relationships among individuals or cells within a population. The accuracy and resolution of reconstructing these relationships depends on the fidelity of microsatellite profiling and the number of microsatellites profiled. However, current methods for targeted profiling of microsatellites incur significant "stutter" artifacts that interfere with accurate genotyping, and sequencing costs preclude whole-genome microsatellite profiling of a large number of samples. We developed a novel method for accurate and cost-effective targeted profiling of a panel of more than 150,000 microsatellites per sample, along with a computational tool for designing large-scale microsatellite panels. Our method addresses the greatest challenge for microsatellite profiling-"stutter" artifacts-with a low-temperature hybridization capture that significantly reduces these artifacts. We also developed a computational tool for accurate genotyping of the resulting microsatellite sequencing data that uses an ensemble approach integrating three microsatellite genotyping tools, which we optimize by analysis of de novo microsatellite mutations in human trios. Altogether, our suite of experimental and computational tools enables high-fidelity, large-scale profiling of microsatellites, which may find utility in diverse applications such as lineage tracing, population genetics, ecology, and forensics.
Assuntos
Repetições de Microssatélites , Humanos , Técnicas de Genotipagem/métodos , Genótipo , Análise de Sequência de DNA/métodosRESUMO
Numerous applications in molecular biology and genomics require characterization of mutant DNA molecules present at low levels within a larger sample of non-mutant DNA. This is often achieved either by selectively amplifying mutant DNA, or by sequencing all the DNA followed by computational identification of the mutant DNA. However, selective amplification is challenging for insertions and deletions (indels). Additionally, sequencing all the DNA in a sample may not be cost effective when only the presence of a mutation needs to be ascertained rather than its allelic fraction. The MutS protein evolved to detect DNA heteroduplexes in which the two DNA strands are mismatched. Prior methods have utilized MutS to enrich mutant DNA by hybridizing mutant to non-mutant DNA to create heteroduplexes. However, the purity of heteroduplex DNA these methods achieve is limited because they can only feasibly perform one or two enrichment cycles. We developed a MutS-magnetic bead system that enables rapid serial enrichment cycles. With six cycles, we achieve complete purification of heteroduplex indel DNA originally present at a 5% fraction and over 40-fold enrichment of heteroduplex DNA originally present at a 1% fraction. This system may enable novel approaches for enriching mutant DNA for targeted sequencing.