Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(9): 998-1009, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32747815

RESUMO

Metastasis constitutes the primary cause of cancer-related deaths, with the lung being a commonly affected organ. We found that activation of lung-resident group 2 innate lymphoid cells (ILC2s) orchestrated suppression of natural killer (NK) cell-mediated innate antitumor immunity, leading to increased lung metastases and mortality. Using multiple models of lung metastasis, we show that interleukin (IL)-33-dependent ILC2 activation in the lung is involved centrally in promoting tumor burden. ILC2-driven innate type 2 inflammation is accompanied by profound local suppression of interferon-γ production and cytotoxic function of lung NK cells. ILC2-dependent suppression of NK cells is elaborated via an innate regulatory mechanism, which is reliant on IL-5-induced lung eosinophilia, ultimately limiting the metabolic fitness of NK cells. Therapeutic targeting of IL-33 or IL-5 reversed NK cell suppression and alleviated cancer burden. Thus, we reveal an important function of IL-33 and ILC2s in promoting tumor metastasis via their capacity to suppress innate type 1 immunity.


Assuntos
Eosinófilos/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Tolerância Imunológica , Imunidade Inata , Interleucina-33/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Células Th2/imunologia
2.
Proc Natl Acad Sci U S A ; 119(49): e2203454119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442116

RESUMO

The development of innate lymphoid cell (ILC) transcription factor reporter mice has shown a previously unexpected complexity in ILC hematopoiesis. Using novel polychromic mice to achieve higher phenotypic resolution, we have characterized bone marrow progenitors that are committed to the group 1 ILC lineage. These common ILC1/NK cell progenitors (ILC1/NKP), which we call "aceNKPs", are defined as lineage-Id2+IL-7Rα+CD25-α4ß7-NKG2A/C/E+Bcl11b-. In vitro, aceNKPs differentiate into group 1 ILCs, including NK-like cells that express Eomes without the requirement for IL-15, and produce IFN-γ and perforin upon IL-15 stimulation. Following reconstitution of Rag2-/-Il2rg-/- hosts, aceNKPs give rise to a spectrum of mature ILC1/NK cells (regardless of their tissue location) that cannot be clearly segregated into the traditional ILC1 and NK subsets, suggesting that group 1 ILCs constitute a dynamic continuum of ILCs that can develop from a common progenitor. In addition, aceNKP-derived ILC1/NK cells effectively ameliorate tumor burden in a model of lung metastasis, where they acquired a cytotoxic NK cell phenotype. Our results identify the primary ILC1/NK progenitor that lacks ILC2 or ILC3 potential and is strictly committed to ILC1/NK cell production irrespective of tissue homing.


Assuntos
Imunidade Inata , Interleucina-15 , Animais , Camundongos , Interleucina-15/genética , Células Matadoras Naturais , Perforina , Fatores de Transcrição , Proteínas Repressoras , Proteínas Supressoras de Tumor
3.
Small ; 15(20): e1900224, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30985079

RESUMO

Interstitially administered iron oxide particles are currently used for interoperative localization of sentinel lymph nodes (LNs) in cancer staging. Several studies have described concerns regarding the cellular accumulation of iron oxide nanoparticles relating them to phenotype and function deregulation of macrophages, impairing their ability to mount an appropriate immune response once an insult is present. This study aims to address what phenotypic and functional changes occur during lymphatic transit and accumulation of these particles. Data show that 60 nm carboxydextran-coated iron nanoparticles use a noncellular mechanism to reach the draining LNs and that their accumulation in macrophages induces transient phenotypic and functional changes. Nevertheless, macrophages recover their baseline levels of response within 7 days, and are still able to mount an appropriate response to bacterially induced inflammation.


Assuntos
Dextranos/administração & dosagem , Macrófagos/imunologia , Nanopartículas de Magnetita/administração & dosagem , Animais , Linhagem Celular , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Células RAW 264.7 , Linfonodo Sentinela/imunologia
4.
Cancer Cell ; 11(6): 526-38, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17560334

RESUMO

CCR7 is implicated in lymph node metastasis of cancer, but its role is obscure. We report a mechanism explaining how interstitial flow caused by lymphatic drainage directs tumor cell migration by autocrine CCR7 signaling. Under static conditions, lymphatic endothelium induced CCR7-dependent chemotaxis of tumor cells through 3D matrices. However, interstitial flow induced strong increases in tumor cell migration that were also CCR7 dependent, but lymphatic independent. This autologous chemotaxis correlated with metastatic potential in four cell lines and was verified by visualizing directional polarization of cells in the flow direction. Computational modeling revealed that transcellular gradients of CCR7 ligand were created under flow to drive this response. This illustrates how tumor cells may be guided to lymphatics during metastasis.


Assuntos
Comunicação Autócrina , Quimiotaxia , Sistema Linfático/citologia , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Quimiocinas/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/fisiologia , Humanos , Metástase Linfática , Sistema Linfático/fisiologia , Modelos Biológicos , Receptores CCR7
5.
iScience ; 27(4): 109546, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577107

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous immune population with diverse immunosuppressive functions in solid tumors. Here, we explored the role of the tumor microenvironment in regulating MDSC differentiation and immunosuppressive properties via signal-regulatory protein alpha (SIRPα)/CD47 signaling. In a murine melanoma model, we observed progressive increases in monocytic MDSCs and monocyte-derived dendritic cells that exhibited potent T cell-suppressive capabilities. These adaptations could be recapitulated in vitro by exposing hematopoietic stem cells to tumor-derived factors. Engagement of CD47 with SIRPα on myeloid cells reduced their phagocytic capability, enhanced expression of immune checkpoints, increased reactive oxygen species production, and suppressed T cell proliferation. Perturbation of SIRPα signaling restored phagocytosis and antigen presentation by MDSCs, which was accompanied by renewed T cell activity and delayed tumor growth in multiple solid cancers. These data highlight that therapeutically targeting myeloid functions in combination with immune checkpoint inhibitors could enhance anti-tumor immunity.

6.
Adv Healthc Mater ; : e2303720, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626388

RESUMO

Lymph nodes (LNs) are organs of the immune system, critical for maintenance of homeostasis and initiation of immune responses, yet there are few models that accurately recapitulate LN functions in vitro. To tackle this issue, an engineered murine LN (eLN) has been developed, replicating key cellular components of the mouse LN; incorporating primary murine lymphocytes, fibroblastic reticular cells, and lymphatic endothelial cells. T and B cell compartments are incorporated within the eLN that mimic LN cortex and paracortex architectures. When challenged, the eLN elicits both robust inflammatory responses and antigen-specific immune activation, showing that the system can differentiate between non specific and antigen-specific stimulation and can be monitored in real time. Beyond immune responses, this model also enables interrogation of changes in stromal cells, thus permitting investigations of all LN cellular components in homeostasis and different disease settings, such as cancer. Here, how LN behavior can be influenced by murine melanoma-derived factors is presented. In conclusion, the eLN model presents a promising platform for in vitro study of LN biology that will enhance understanding of stromal and immune responses in the murine LN, and in doing so will enable development of novel therapeutic strategies to improve LN responses in disease.

7.
Biofabrication ; 15(2)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36626838

RESUMO

Realizing the translational impacts of three-dimensional (3D) bioprinting for cancer research necessitates innovation in bioprinting workflows which integrate affordability, user-friendliness, and biological relevance. Herein, we demonstrate 'BioArm', a simple, yet highly effective extrusion bioprinting platform, which can be folded into a carry-on pack, and rapidly deployed between bio-facilities. BioArm enabled the reconstruction of compartmental tumoroids with cancer-associated fibroblasts (CAFs), forming the shell of each tumoroid. The 3D printed core-shell tumoroids showedde novosynthesized extracellular matrices, and enhanced cellular proliferation compared to the tumour alone 3D printed spheroid culture. Further, thein vivophenotypes of CAFs normally lost after conventional 2D co-culture re-emerged in the bioprinted model. Embedding the 3D printed tumoroids in an immune cell-laden collagen matrix permitted tracking of the interaction between immune cells and tumoroids, and subsequent simulated immunotherapy treatments. Our deployable extrusion bioprinting workflow could significantly widen the accessibility of 3D bioprinting for replicating multi-compartmental architectures of tumour microenvironment, and for developing strategies in cancer drug testing in the future.


Assuntos
Bioimpressão , Fibroblastos Associados a Câncer , Neoplasias , Humanos , Bioimpressão/métodos , Comunicação Celular , Colágeno , Hidrogéis , Neoplasias/terapia , Impressão Tridimensional , Alicerces Teciduais , Microambiente Tumoral
8.
Cancer Discov ; 13(6): 1346-1363, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36929873

RESUMO

Intestinal metaplasia in the esophagus (Barrett's esophagus IM, or BE-IM) and stomach (GIM) are considered precursors for esophageal and gastric adenocarcinoma, respectively. We hypothesize that BE-IM and GIM follow parallel developmental trajectories in response to differing inflammatory insults. Here, we construct a single-cell RNA-sequencing atlas, supported by protein expression studies, of the entire gastrointestinal tract spanning physiologically normal and pathologic states including gastric metaplasia in the esophagus (E-GM), BE-IM, atrophic gastritis, and GIM. We demonstrate that BE-IM and GIM share molecular features, and individual cells simultaneously possess transcriptional properties of gastric and intestinal epithelia, suggesting phenotypic mosaicism. Transcriptionally E-GM resembles atrophic gastritis; genetically, it is clonal and has a lower mutational burden than BE-IM. Finally, we show that GIM and BE-IM acquire a protumorigenic, activated fibroblast microenvironment. These findings suggest that BE-IM and GIM can be considered molecularly similar entities in adjacent organs, opening the path for shared detection and treatment strategies. SIGNIFICANCE: Our data capture the gradual molecular and phenotypic transition from a gastric to intestinal phenotype (IM) in the esophagus and stomach. Because BE-IM and GIM can predispose to cancer, this new understanding of a common developmental trajectory could pave the way for a more unified approach to detection and treatment. See related commentary by Stachler, p. 1291. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Esôfago de Barrett , Gastrite Atrófica , Humanos , RNA , Metaplasia/genética , Esôfago/metabolismo , Esôfago/patologia , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Análise de Sequência de RNA , Microambiente Tumoral
9.
Circ Res ; 106(5): 920-31, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20133901

RESUMO

RATIONALE: Lymphatic transport of peripheral interstitial fluid and dendritic cells (DCs) is important for both adaptive immunity and maintenance of tolerance to self-antigens. Lymphatic drainage can change rapidly and dramatically on tissue injury or inflammation, and therefore increased fluid flow may serve as an important early cue for inflammation; however, the effects of transmural flow on lymphatic function are unknown. OBJECTIVE: Here we tested the hypothesis that lymph drainage regulates the fluid and cell transport functions of lymphatic endothelium. METHODS AND RESULTS: Using in vitro and in vivo models, we demonstrated that lymphatic endothelium is sensitive to low levels of transmural flow. Basal-to-luminal flow (0.1 and 1 mum/sec) increased lymphatic permeability, dextran transport, and aquaporin-2 expression, as well as DC transmigration into lymphatics. The latter was associated with increased lymphatic expression of the DC homing chemokine CCL21 and the adhesion molecules intercellular adhesion molecule-1 and E-selectin. In addition, transmural flow induced delocalization and downregulation of vascular endothelial cadherin and PECAM-1 (platelet/endothelial cell adhesion molecule-1). Flow-enhanced DC transmigration could be reversed by blocking CCR7, intercellular adhesion molecule-1, or E-selectin. In an experimental model of lymphedema, where lymphatic drainage is greatly reduced or absent, lymphatic endothelial expression of CCL21 was nearly absent. CONCLUSIONS: These findings introduce transmural flow as an important regulator of lymphatic endothelial function and suggest that flow might serve as an early inflammatory signal for lymphatics, causing them to regulate transport functions to facilitate the delivery of soluble antigens and DCs to lymph nodes.


Assuntos
Movimento Celular , Células Dendríticas/metabolismo , Células Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Linfa/metabolismo , Linfedema/metabolismo , Transferência Adotiva , Animais , Aquaporina 2/metabolismo , Transporte Biológico , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CCL21/metabolismo , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/transplante , Dextranos/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Endotélio Linfático/imunologia , Endotélio Linfático/fisiopatologia , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Linfa/imunologia , Linfedema/imunologia , Linfedema/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Permeabilidade , Interferência de RNA , Receptores CCR7/genética , Receptores CCR7/metabolismo , Fatores de Tempo
10.
Cancer Immunol Res ; 10(4): 482-497, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362044

RESUMO

Communication between tumors and the stroma of tumor-draining lymph nodes (TDLN) exists before metastasis arises, altering the structure and function of the TDLN niche. Transcriptional profiling of fibroblastic reticular cells (FRC), the dominant stromal population of lymph nodes, has revealed that FRCs in TDLNs are reprogrammed. However, the tumor-derived factors driving the changes in FRCs remain to be identified. Taking an unbiased approach, we have shown herein that lactic acid (LA), a metabolite released by cancer cells, was not only secreted by B16.F10 and 4T1 tumors in high amounts, but also that it was enriched in TDLNs. LA supported an upregulation of Podoplanin (Pdpn) and Thy1 and downregulation of IL7 in FRCs of TDLNs, making them akin to activated fibroblasts found at the primary tumor site. Furthermore, we found that tumor-derived LA altered mitochondrial function of FRCs in TDLNs. Thus, our results demonstrate a mechanism by which a tumor-derived metabolite connected with a low pH environment modulates the function of fibroblasts in TDLNs. How lymph node function is perturbed to support cancer metastases remains unclear. The authors show that tumor-derived LA drains to lymph nodes where it modulates the function of lymph node stromal cells, prior to metastatic colonization.


Assuntos
Ácido Láctico , Neoplasias , Fibroblastos , Humanos , Ácido Láctico/metabolismo , Linfonodos/patologia , Neoplasias/patologia
11.
Microcirculation ; 18(7): 517-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21575093

RESUMO

The lymphatic system has long been accepted as a passive escape route for metastasizing tumor cells. The classic view that lymphatics solely regulate fluid balance, lipid metabolism, and immune cell trafficking to the LN is now being challenged. Research in the field is entering a new phase with increasing evidence suggesting that lymphatics play an active role modulating inflammation, autoimmune disease, and the anti-tumor immune response. Evidence exists to suggest that the lymphatics and chemokines guide LN bi-functionally, driving immunity vs. tolerance according to demand. At sites of chronic inflammation, autoimmunity, and tumors, however, the same chemokines and aberrant lymphangiogenesis foster disease progression. These caveats point to the existence of a complex, finely balanced relationship between lymphatics and the immune system in health and disease. This review discusses emerging concepts in the fields of immunology, tumor biology, and lymphatic physiology, identifying critical, overlapping functions of lymphatics, the LN and lymphoid factors in tipping the balance of immunity vs. tolerance in favor of a growing tumor.


Assuntos
Tolerância Imunológica , Sistema Linfático/imunologia , Neoplasias/imunologia , Animais , Humanos , Sistema Linfático/patologia , Metástase Neoplásica , Neoplasias/patologia
12.
Mol Oncol ; 15(10): 2600-2633, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32741067

RESUMO

Successful establishment of a tumour relies on a cascade of interactions between cancer cells and stromal cells within an evolving microenvironment. Both immune and nonimmune cellular components are key factors in this process, and the individual players may change their role from tumour elimination to tumour promotion as the microenvironment develops. While the tumour-stroma crosstalk present in an established tumour is well-studied, aspects in the early tumour or premalignant microenvironment have received less attention. This is in part due to the challenges in studying this process in the clinic or in mouse models. Here, we review the key anti- and pro-tumour factors in the early microenvironment and discuss how understanding this process may be exploited in the clinic.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Humanos , Camundongos , Neoplasias/patologia , Células Estromais/patologia
13.
Nat Commun ; 12(1): 683, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514748

RESUMO

Tumors consist of cancer cells and a network of non-cancerous stroma. Cancer-associated fibroblasts (CAF) are known to support tumorigenesis, and are emerging as immune modulators. Neutrophils release histone-bound nuclear DNA and cytotoxic granules as extracellular traps (NET). Here we show that CAFs induce NET formation within the tumor and systemically in the blood and bone marrow. These tumor-induced NETs (t-NETs) are driven by a ROS-mediated pathway dependent on CAF-derived Amyloid ß, a peptide implicated in both neurodegenerative and inflammatory disorders. Inhibition of NETosis in murine tumors skews neutrophils to an anti-tumor phenotype, preventing tumor growth; reciprocally, t-NETs enhance CAF activation. Mirroring observations in mice, CAFs are detected juxtaposed to NETs in human melanoma and pancreatic adenocarcinoma, and show elevated amyloid and ß-Secretase expression which correlates with poor prognosis. In summary, we report that CAFs drive NETosis to support cancer progression, identifying Amyloid ß as the protagonist and potential therapeutic target.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Armadilhas Extracelulares/metabolismo , Neoplasias/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Medula Óssea/patologia , Antígeno CD11b/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinogênese/patologia , Comunicação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Armadilhas Extracelulares/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias/sangue , Neoplasias/genética , Neoplasias/mortalidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Estudos Observacionais como Assunto , Cultura Primária de Células , Prognóstico , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos
14.
Adv Drug Deliv Rev ; 161-162: 75-89, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32783989

RESUMO

Recent advances have identified a growing array of roles played by lymphatics in the tumor microenvironment, from providing a route of metastasis to immune modulation. The tumor microenvironment represents an exceptionally complex, dynamic niche comprised of a diverse mixture of cancer cells and normal host cells termed the stroma. This review discusses our current understanding of stromal elements and how they regulate lymphatic growth and functional properties in the tumor context.


Assuntos
Sistema Linfático/imunologia , Neoplasias/patologia , Microambiente Tumoral/imunologia , Fibroblastos Associados a Câncer/imunologia , Células Endoteliais/imunologia , Matriz Extracelular/imunologia , Humanos , Vasos Linfáticos/patologia , Modelos Biológicos , Neovascularização Patológica/imunologia , Receptor Cross-Talk/imunologia
15.
Cell Rep ; 31(7): 107628, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433953

RESUMO

Here, using single-cell RNA sequencing, we examine the stromal compartment in murine melanoma and draining lymph nodes (LNs) at points across tumor development, providing data at http://www.teichlab.org/data/. Naive lymphocytes from LNs undergo activation and clonal expansion within the tumor, before PD1 and Lag3 expression, while tumor-associated myeloid cells promote the formation of a suppressive niche. We identify three temporally distinct stromal populations displaying unique functional signatures, conserved across mouse and human tumors. Whereas "immune" stromal cells are observed in early tumors, "contractile" cells become more prevalent at later time points. Complement component C3 is specifically expressed in the immune population. Its cleavage product C3a supports the recruitment of C3aR+ macrophages, and perturbation of C3a and C3aR disrupts immune infiltration, slowing tumor growth. Our results highlight the power of scRNA-seq to identify complex interplays and increase stromal diversity as a tumor develops, revealing that stromal cells acquire the capacity to modulate immune landscapes from early disease.


Assuntos
Melanoma/imunologia , Análise de Sequência de RNA/métodos , Células Estromais/metabolismo , Microambiente Tumoral/imunologia , Animais , Humanos , Camundongos
16.
Nat Commun ; 11(1): 3588, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680985

RESUMO

Tumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells, defining the global gene expression identity of these steroid-producing immune cells and gene regulatory networks by using single-cell transcriptomics. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway is sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Melanoma/imunologia , Esteroides/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/imunologia , Humanos , Evasão da Resposta Imune , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Knockout , Esteroides/biossíntese
17.
FASEB J ; 21(4): 1003-12, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17210781

RESUMO

Activation of vascular endothelial growth factor (VEGF) receptor-3 (VEGFR-3) by VEGF-C initiates lymphangiogenesis by promoting lymphatic proliferation and migration. However, it is unclear whether VEGFR-3 signaling is required beyond these initial stages, namely during the organization of new lymphatic endothelial cells (LECs) into functional capillaries. Furthermore, the role of VEGFR-2, which is also expressed on LECs and binds VEGF-C, is unclear. We addressed these questions by selectively neutralizing VEGFR-3 and/or VEGFR-2 for various time periods in an adult model of lymphangiogenesis in regenerating skin. While blocking either VEGFR-2 or VEGFR-3 with specific antagonist mAbs (DC101 and mF4-31C1, respectively) prior to lymphatic migration prevented lymphangiogenesis, blocking VEGFR-3 subsequent to migration did not affect organization into functional capillaries, and VEGFR-2 blocking had only a small hindrance on organization. These findings were confirmed in vitro using human LECs and anti-human antagonist mAbs (IMC-1121a and hF4-3C5): both VEGFR-2 and -3 signaling were required for migration and proliferation, but tubulogenesis in 3D cultures was unaffected by VEGFR-3 blocking and partially hindered by VEGFR-2 blocking. Furthermore, both in vitro and in vivo, while VEGFR-3 blocking had no effect on LEC organization, coneutralization of VEGFR-2, and VEGFR-3 completely prevented lymphatic organization. Our findings demonstrate that cooperative signaling of VEGFR-2 and -3 is necessary for lymphatic migration and proliferation, but VEGFR-3 is redundant with VEGFR-2 for LEC organization into functional capillaries.


Assuntos
Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Movimento Celular , Proliferação de Células , Feminino , Humanos , Linfonodos/patologia , Sistema Linfático , Camundongos , Camundongos Endogâmicos BALB C , Pele/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
18.
Nat Commun ; 9(1): 948, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507342

RESUMO

Tumours have developed strategies to interfere with most steps required for anti-tumour immune responses. Although many populations contribute to anti-tumour responses, tumour-infiltrating cytotoxic T cells dominate, hence, many suppressive strategies act to inhibit these. Tumour-associated T cells are frequently restricted to stromal zones rather than tumour islands, raising the possibility that the tumour microenvironment, where crosstalk between malignant and "normal" stromal cells exists, may be critical for T cell suppression. We provide evidence of direct interactions between stroma and T cells driving suppression, showing that cancer-associated fibroblasts (CAFs) sample, process and cross-present antigen, killing CD8+ T cells in an antigen-specific, antigen-dependent manner via PD-L2 and FASL. Inhibitory ligand expression is observed in CAFs from human tumours, and neutralisation of PD-L2 or FASL reactivates T cell cytotoxic capacity in vitro and in vivo. Thus, CAFs support T cell suppression within the tumour microenvironment by a mechanism dependent on immune checkpoint activation.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Fibroblastos Associados a Câncer/patologia , Citoproteção , Animais , Sobrevivência Celular , Apresentação Cruzada/imunologia , Citotoxicidade Imunológica , Proteína Ligante Fas/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteólise
19.
Nat Commun ; 9(1): 2951, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054470

RESUMO

Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor.


Assuntos
Neoplasias da Mama/metabolismo , Macrófagos/metabolismo , Metástase Neoplásica , Cicatrização/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Colágeno/metabolismo , Citocinas/metabolismo , Endopeptidases , Feminino , Gelatinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-6/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Fenótipo , Prognóstico , Serina Endopeptidases/metabolismo , Pele/metabolismo , Microambiente Tumoral/fisiologia
20.
Cancer Res ; 62(14): 4123-31, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12124351

RESUMO

Angiogenesis is essential for tumor growth. Vascular endothelial growth factor (VEGF) is the most potent growth factor of tumor neovasculature, has been shown to be up-regulated in every tumor studied thus far, and is correlated with tumor stage and progression. To determine whether specific VEGF splice variants were differentially expressed in renal cell carcinomas, 18 polar tumor samples were analyzed by reverse transcription-PCR using primers designed to differentiate between VEGF splice variants. Control tissue was derived from the opposite normal pole. An amplicon of length consistent with the previously described variant VEGF(148) was found in normal kidney tissue. Subsequent sequencing revealed a new VEGF isoform formed by differential splicing from the end of exon 7 into the 3' untranslated region of the mRNA. Cloning of this transcript showed that translation would result in a 165-amino acid peptide with an alternative terminal 6 amino acids, followed by a stop codon. We have termed this new isoform VEGF165b. This isoform was present in 17 of 18 normal kidney samples but only 4 of 18 cases from matched malignant tissue. VEGF165b was therefore expressed in a significantly higher proportion of normal tissue than malignant tissue from the same patients (P < 0.001). To determine the functional significance of this new isoform, we expressed the full-length protein in a heterologous expression system. Conditioned medium containing this isoform significantly and dose dependently inhibited VEGF165-mediated proliferation, migration of endothelial cells, and vasodilatation of mesenteric arteries. This novel isoform VEGF165b is therefore an endogenous inhibitory form of VEGF that is down-regulated in renal tumors and, therefore, may be anti-angiogenesis.


Assuntos
Processamento Alternativo , Carcinoma de Células Renais/metabolismo , Fatores de Crescimento Endotelial/metabolismo , Neoplasias Renais/metabolismo , Linfocinas/metabolismo , Idoso , Sequência de Aminoácidos , Sequência de Bases , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Regulação para Baixo , Fatores de Crescimento Endotelial/genética , Fatores de Crescimento Endotelial/fisiologia , Endotélio Vascular/citologia , Éxons , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Linfocinas/genética , Linfocinas/fisiologia , Pessoa de Meia-Idade , Dados de Sequência Molecular , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência do Ácido Nucleico , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA