Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 194(3): 1745-1763, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37837603

RESUMO

Group VII ethylene response factors (ERFVIIs), whose stability is oxygen concentration-dependent, play key roles in regulating hypoxia response genes in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) during submergence. To understand the evolution of flooding tolerance in cereal crops, we evaluated whether Brachypodium distachyon ERFVII genes (BdERFVIIs) are related to submergence tolerance. We found that three BdERFVIIs, BdERF108, BdERF018, and BdERF961, form a feedback regulatory loop to mediate downstream responses. BdERF108 and BdERF018 activated the expression of BdERF961 and PHYTOGLOBIN 1 (PGB1), which promoted nitric oxide turnover and preserved ERFVII protein stability. The activation of PGB1 was subsequently counteracted by increased BdERF961 accumulation through negative feedback regulation. Interestingly, we found that OsERF67, the orthologue of BdERF961 in rice, activated PHYTOGLOBIN (OsHB2) expression and formed distinct regulatory loops during submergence. Overall, the divergent regulatory mechanisms exhibited by orthologs collectively offer perspectives for the development of submergence-tolerant crops.


Assuntos
Arabidopsis , Brachypodium , Oryza , Etilenos , Arabidopsis/genética , Brachypodium/genética , Produtos Agrícolas , Oryza/genética
2.
New Phytol ; 239(4): 1315-1331, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301985

RESUMO

We studied Arabidopsis HYPOXIA-RESPONSIVE MODULATOR 1 (HRM1), which belongs to a group of core hypoxia-responsive genes that are conserved among plant species across great evolutionary distance. The hrm1 mutants had lower survival rates and showed more damage than the wild-type (WT) plants under hypoxic stress. Promoter analyses showed that HRM1 is regulated by EIN3 and RAP2.2 during hypoxia. Fluorescence tracing and immunogold labeling assays showed that HRM1 protein was enriched in mitochondria. Co-immunoprecipitation coupled with mass spectrometry and bimolecular fluorescence complementation assays showed that HRM1 associates with the complex-I in mitochondria. Compared with the WT plants, metabolic activities related to the mitochondrial electron transport chain (mETC) were higher in hrm1 mutants during hypoxia. Loss of HRM1 caused de-repression of mETC complex I, II, and IV activities and higher basal and maximum respiration rates under hypoxia. Our results showed that through association with complex-I, HRM1 attenuates mETC activity and modulates the respiratory chain under low oxygen. Compared with the regulatory system in mammalian, adjustment of mitochondrial respiration to low oxygen helps plants decrease reactive oxygen species production and is also critical for the submergence survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte de Elétrons , Hipóxia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxigênio/metabolismo , Mamíferos
3.
Plant Physiol ; 188(4): 1917-1930, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35088855

RESUMO

Wild tomatoes (Solanum peruvianum) are important genomic resources for tomato research and breeding. Development of a foreign DNA-free clustered regularly interspaced short palindromic repeat (CRISPR)-Cas delivery system has potential to mitigate public concern about genetically modified organisms. Here, we established a DNA-free CRISPR-Cas9 genome editing system based on an optimized protoplast regeneration protocol of S. peruvianum, an important resource for tomato introgression breeding. We generated mutants for genes involved in small interfering RNAs biogenesis, RNA-DEPENDENT RNA POLYMERASE 6 (SpRDR6), and SUPPRESSOR OF GENE SILENCING 3 (SpSGS3); pathogen-related peptide precursors, PATHOGENESIS-RELATED PROTEIN-1 (SpPR-1) and PROSYSTEMIN (SpProSys); and fungal resistance (MILDEW RESISTANT LOCUS O, SpMlo1) using diploid or tetraploid protoplasts derived from in vitro-grown shoots. The ploidy level of these regenerants was not affected by PEG-Ca2+-mediated transfection, CRISPR reagents, or the target genes. By karyotyping and whole genome sequencing analysis, we confirmed that CRISPR-Cas9 editing did not introduce chromosomal changes or unintended genome editing sites. All mutated genes in both diploid and tetraploid regenerants were heritable in the next generation. spsgs3 null T0 regenerants and sprdr6 null T1 progeny had wiry, sterile phenotypes in both diploid and tetraploid lines. The sterility of the spsgs3 null mutant was partially rescued, and fruits were obtained by grafting to wild-type (WT) stock and pollination with WT pollen. The resulting seeds contained the mutated alleles. Tomato yellow leaf curl virus proliferated at higher levels in spsgs3 and sprdr6 mutants than in the WT. Therefore, this protoplast regeneration technique should greatly facilitate tomato polyploidization and enable the use of CRISPR-Cas for S. peruvianum domestication and tomato breeding.


Assuntos
Solanum lycopersicum , Solanum , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Solanum lycopersicum/genética , Melhoramento Vegetal , Protoplastos , Regeneração , Solanum/genética , Tetraploidia
4.
J Exp Bot ; 74(8): 2556-2571, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36656734

RESUMO

The pollen grains of Phalaenopsis orchids are clumped tightly together, packed in pollen dispersal units called pollinia. In this study, the morphology, cytology, biochemistry, and sucrose transporters in pollinia of Phalaenopsis orchids were investigated. Histochemical detection was used to characterize the distribution of sugars and callose at the different development stages of pollinia. Ultra-performance liquid chromatography-high resolution-tandem mass spectrometry data indicated that P. aphrodite accumulated abundant saccharides such as sucrose, galactinol, myo-inositol, and glucose, and trace amounts of raffinose and trehalose in mature pollinia. We found that galactinol synthase (PAXXG304680) and trehalose-6-phosphate phosphatase (PAXXG016120) genes were preferentially expressed in mature pollinia. The P. aphrodite genome was identified as having 11 sucrose transporters (SUTs). Our qRT-PCR confirmed that two SUTs (PAXXG030250 and PAXXG195390) were preferentially expressed in the pollinia. Pollinia germinated in pollen germination media (PGM) supplemented with 10% sucrose showed increased callose production and enhanced pollinia germination, but there was no callose or germination in PGM without sucrose. We show that P. aphrodite accumulates high levels of sugars in mature pollinia, providing nutrients and enhanced SUT gene expression for pollinia germination and tube growth.


Assuntos
Orchidaceae , Açúcares , Açúcares/metabolismo , Sacarose/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Pólen/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(8): 3300-3309, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30723146

RESUMO

The rice SUB1A-1 gene, which encodes a group VII ethylene response factor (ERFVII), plays a pivotal role in rice survival under flooding stress, as well as other abiotic stresses. In Arabidopsis, five ERFVII factors play roles in regulating hypoxic responses. A characteristic feature of Arabidopsis ERFVIIs is a destabilizing N terminus, which functions as an N-degron that targets them for degradation via the oxygen-dependent N-end rule pathway of proteolysis, but permits their stabilization during hypoxia for hypoxia-responsive signaling. Despite having the canonical N-degron sequence, SUB1A-1 is not under N-end rule regulation, suggesting a distinct hypoxia signaling pathway in rice during submergence. Herein we show that two other rice ERFVIIs gene, ERF66 and ERF67, are directly transcriptionally up-regulated by SUB1A-1 under submergence. In contrast to SUB1A-1, ERF66 and ERF67 are substrates of the N-end rule pathway that are stabilized under hypoxia and may be responsible for triggering a stronger transcriptional response to promote submergence survival. In support of this, overexpression of ERF66 or ERF67 leads to activation of anaerobic survival genes and enhanced submergence tolerance. Furthermore, by using structural and protein-interaction analyses, we show that the C terminus of SUB1A-1 prevents its degradation via the N-end rule and directly interacts with the SUB1A-1 N terminus, which may explain the enhanced stability of SUB1A-1 despite bearing an N-degron sequence. In summary, our results suggest that SUB1A-1, ERF66, and ERF67 form a regulatory cascade involving transcriptional and N-end rule control, which allows rice to distinguish flooding from other SUB1A-1-regulated stresses.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Oryza/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Adaptação Fisiológica/genética , Anaerobiose/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Oryza/crescimento & desenvolvimento , Transdução de Sinais/genética , Especificidade por Substrato
6.
New Phytol ; 229(1): 57-63, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733144

RESUMO

The major consequence of hypoxia is a dramatic reduction in energy production. At the onset of hypoxia, both oxygen and ATP availability decrease. Oxygen and energy sensing therefore converge to induce an adaptive response at both the transcriptional and translational levels. Oxygen sensing results in stabilization of the transcription factors that activate hypoxia-response genes, including enzymes required for efficient sugar metabolism, allowing plants to produce enough energy to ensure survival. The translation of the resulting mRNAs is mediated by SnRK1, acting as an energy sensor. However, as soon as the sugar availability decreases, a homeostatic mechanism, detecting sugar starvation, dampens the hypoxia-dependent transcription to reduce energy consumption and preserves carbon reserves for regrowth when oxygen availability is restored.


Assuntos
Transdução de Sinais , Açúcares , Hipóxia Celular , Hipóxia , Oxigênio , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859101

RESUMO

The moth orchid is an important ornamental crop. It is very sensitive to high light irradiation due to photoinhibition. In this study, young orchid tissue culture seedlings and 2.5" potted plants pretreated under blue light (BL, λmax = 450 nm) at 100 µmol m-2 s-1 for 12 days (BL acclimation) were found to have an increased tolerance to high light irradiation. After BL acclimation, orchids had an increased anthocyanin accumulation, enhanced chloroplast avoidance, and increased chlorophyll fluorescence capacity whenever they were exposed to high light of 1000 µmol m-2 s-1 for two weeks (HL). They had higher Fv/Fm, electron transport rate (ETR), chlorophyll content, catalase activity and sucrose content when compared to the control without BL acclimation. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that transcript levels of phototropins, D1, RbcS, PEPCK, Catalase and SUT2 were upregulated in the BL-acclimated orchids. Consequently, BL acclimation orchids had better growth when compared to the control under long-term high light stress. In summary, this study provides a solution, i.e., BL acclimation, to reduce moth orchid photoinhibition and enhance growth before transplantation of the young tissue culture seedlings and potted plants into greenhouses, where they usually suffer from a high light fluctuation problem.


Assuntos
Luz/efeitos adversos , Orchidaceae/fisiologia , Fotossíntese/efeitos da radiação , Proteínas de Plantas/genética , Aclimatação/efeitos da radiação , Animais , Antocianinas/metabolismo , Catalase/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Orchidaceae/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Sacarose/metabolismo
8.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207795

RESUMO

The Gram-negative bacterium Pseudomonas taiwanensis is a novel bacterium that uses shrimp shell waste as its sole sources of carbon and nitrogen. It is a versatile bacterium with potential for use in biological control, with activities including toxicity toward insects, fungi, and the rice pathogen Xanthomonas oryzae pv.oryzae (Xoo). In this study, the complete 5.08-Mb genome sequence of P. taiwanensis CMS was determined by a combination of NGS/Sanger sequencing and optical mapping. Comparison of optical maps of seven Pseudomonas species showed that P. taiwanensis is most closely related to P. putida KT 2400. We screened a total of 11,646 individual Tn5-transponson tagged strains to identify genes that are involved in the production and regulation of the iron-chelator pyoverdine in P. taiwanensis, which is a key anti-Xoo factor. Our results indicated that the two-component system (TCS) EnvZ/OmpR plays a positive regulatory role in the production of pyoverdine, whereas the sigma factor RpoS functions as a repressor. The knowledge of the molecular basis of the regulation of pyoverdine by P. taiwanensis provided herein will be useful for its development for use in biological control, including as an anti-Xoo agent.


Assuntos
Elementos de DNA Transponíveis , Mutagênese Insercional , Oryza/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas , Controle Biológico de Vetores , Pseudomonas/genética , Pseudomonas/metabolismo , Sequenciamento Completo do Genoma , Xanthomonas/crescimento & desenvolvimento
9.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126662

RESUMO

Vanilla orchid, which is well-known for its flavor and fragrance, is cultivated in tropical and subtropical regions. This shade-loving plant is very sensitive to high irradiance. In this study, we show that vanilla chloroplasts started to have avoidance movement when blue light (BL) was higher than 20 µmol m-2s-1 and significant avoidance movement was observed under BL irradiation at 100 µmol m-2s-1 (BL100). The light response curve indicated that when vanilla was exposed to 1000 µmol m-2s-1, the electron transport rate (ETR) and photochemical quenching of fluorescence (qP) were significantly reduced to a negligible amount. We found that if a vanilla orchid was irradiated with BL100 for 12 days, it acquired BL-acclimation. Chloroplasts moved to the side of cells in order to reduce light-harvesting antenna size, and chloroplast photodamage was eliminated. Therefore, BL-acclimation enhanced vanilla orchid growth and tolerance to moderate (500 µmol m-2s-1) and high light (1000 µmol m-2s-1) stress conditions. It was found that under high irradiation, BL-acclimatized vanilla maintained higher ETR and qP capacity than the control without BL-acclimation. BL-acclimation induced antioxidant enzyme activities, reduced ROS accumulation, and accumulated more carbohydrates. Moreover, BL-acclimatized orchids upregulated photosystem-II-associated marker genes (D1 and PetC), Rubisco and PEPC transcripts and sustained expression levels thereof, and also maximized the photosynthesis rate. Consequently, BL-acclimatized orchids had higher biomass. In short, this study found that acclimating vanilla orchid with BL before transplantation to the field might eliminate photoinhibition and enhance vanilla growth and production.


Assuntos
Clorofila/metabolismo , Cloroplastos/metabolismo , Estiolamento , Luz , Fotossíntese , Vanilla/crescimento & desenvolvimento , Cloroplastos/efeitos da radiação , Fluorescência , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Vanilla/metabolismo , Vanilla/efeitos da radiação
10.
New Phytol ; 222(1): 366-381, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30414328

RESUMO

Cellular responses to oxygen deprivation are essential for survival during energy crises in plants and animals. Hypoxia caused by submergence results in reprogramming of translation dynamic in plants, but the molecular mechanisms are not well understood. Here we show that Arabidopsis Snf1-related protein kinase 1 (SnRK1) phosphorylates the translation initiation factor eIFiso4G to regulate translation dynamic under submergence. In Arabidopsis, there are two eIFiso4G genes, eIFiso4G1 and eIFiso4G2, which belong to the eIF4G family. Both eIFiso4Gs were phosphorylated by SnRK1 under submergence. Interestingly, the eIFiso4G1 knockout mutant, but not the eIFiso4G2 mutant, became more sensitive to submergence, implying that eIFiso4G1 is involved in regulating submergence tolerance in Arabidopsis. Comparison of RNA sequences in the polysome fraction and the RNAs immunoprecipitated by eIFiso4G1 from Col-0 and the SnRK1 and eIFiso4G1 mutants revealed that lack of eIFiso4G1 phosphorylation disrupts the translation of specific mRNAs under submergence. Taken together, our findings suggest that the SnRK1-eIFiso4G1 relay controls the translation of an array of genes under hypoxia, including core hypoxia response genes and genes related to stress response and biosynthetic process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Regiões 5' não Traduzidas/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Fator de Iniciação Eucariótico 4G/genética , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Fosforilação , Polirribossomos/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato
11.
Ann Bot ; 123(1): 69-77, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113635

RESUMO

Background and Aims: Orchidaceae is a large plant family, and its extraordinary adaptations may have guaranteed its evolutionary success. Flavonoids are a group of secondary metabolites that mediate plant acclimation to challenge environments. Chalcone synthase (CHS) catalyses the initial step in the flavonoid biosynthetic pathway. This is the first chromosome-level investigation of the CHS gene family in Phalaenopsis aphrodite and was conducted to elucidate if divergence of this gene family is associated with chromosome evolution. Methods: Complete CHS genes were identified from our whole-genome sequencing data sets and their gene expression profiles were obtained from our transcriptomic data sets. Fluorescence in situ hybridization (FISH) was conducted to position five CHS genes to high-resolution pachytene chromosomes. Key Results: The five Phalaenopsis CHS genes can be classified into three groups, PaCHS1, PaCHS2 and the tandemly arrayed three-gene cluster, which diverged earlier than those of the orchid genera and species. Additionally, pachytene chromosome-based FISH mapping showed that the three groups of CHS genes are localized on three distinct chromosomes. Moreover, an expression analysis of RNA sequencing revealed that the five CHS genes had highly differentiated expression patterns and its expression pattern-based clustering showed high correlations between sequence divergences and chromosomal localizations of the CHS gene family in P. aphrodite. Conclusions: Based on their phylogenetic relationships, expression clustering analysis and chromosomal distributions of the five paralogous PaCHS genes, we proposed that expansion of this gene family in P. aphrodite occurred through segmental duplications, followed by tandem duplications. These findings provide information for further studies of CHS functions and regulations, and shed light on the divergence of an important gene family in orchids.


Assuntos
Aciltransferases/genética , Duplicação Cromossômica , Evolução Molecular , Orchidaceae/genética , Proteínas de Plantas/genética , Aciltransferases/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo
12.
Plant J ; 90(5): 994-1006, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28258650

RESUMO

The chloroplast NAD(P)H dehydrogenase-like (NDH) complex consists of about 30 subunits from both the nuclear and chloroplast genomes and is ubiquitous across most land plants. In some orchids, such as Phalaenopsis equestris, Dendrobium officinale and Dendrobium catenatum, most of the 11 chloroplast genome-encoded ndh genes (cp-ndh) have been lost. Here we investigated whether functional cp-ndh genes have been completely lost in these orchids or whether they have been transferred and retained in the nuclear genome. Further, we assessed whether both cp-ndh genes and nucleus-encoded NDH-related genes can be lost, resulting in the absence of the NDH complex. Comparative analyses of the genome of Apostasia odorata, an orchid species with a complete complement of cp-ndh genes which represents the sister lineage to all other orchids, and three published orchid genome sequences for P. equestris, D. officinale and D. catenatum, which are all missing cp-ndh genes, indicated that copies of cp-ndh genes are not present in any of these four nuclear genomes. This observation suggests that the NDH complex is not necessary for some plants. Comparative genomic/transcriptomic analyses of currently available plastid genome sequences and nuclear transcriptome data showed that 47 out of 660 photoautotrophic plants and all the heterotrophic plants are missing plastid-encoded cp-ndh genes and exhibit no evidence for maintenance of a functional NDH complex. Our data indicate that the NDH complex can be lost in photoautotrophic plant species. Further, the loss of the NDH complex may increase the probability of transition from a photoautotrophic to a heterotrophic life history.


Assuntos
Genoma de Cloroplastos/genética , Genoma de Planta/genética , Orchidaceae/genética , Proteínas de Plantas/genética
13.
Plant Biotechnol J ; 16(7): 1295-1310, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29230929

RESUMO

Plant protoplasts are useful for assessing the efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mutagenesis. We improved the process of protoplast isolation and transfection of several plant species. We also developed a method to isolate and regenerate single mutagenized Nicotianna tabacum protoplasts into mature plants. Following transfection of protoplasts with constructs encoding Cas9 and sgRNAs, target gene DNA could be amplified for further analysis to determine mutagenesis efficiency. We investigated N. tabacum protoplasts and derived regenerated plants for targeted mutagenesis of the phytoene desaturase (NtPDS) gene. Genotyping of albino regenerants indicated that all four NtPDS alleles were mutated in amphidiploid tobacco, and no Cas9 DNA could be detected in most regenerated plants.


Assuntos
Sistemas CRISPR-Cas , Mutagênese Sítio-Dirigida/métodos , Protoplastos , Arabidopsis/genética , Brassica/genética , Sistemas CRISPR-Cas/genética , Genes de Plantas/genética , Milhetes/genética , Mutação/genética , Oryza/genética , Oxirredutases/genética , Sasa/genética , Nicotiana/genética , Zea mays/genética
14.
Plant Biotechnol J ; 16(12): 2027-2041, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29704444

RESUMO

The Orchidaceae is a diverse and ecologically important plant family. Approximately 69% of all orchid species are epiphytes, which provide diverse microhabitats for many small animals and fungi in the canopy of tropical rainforests. Moreover, many orchids are of economic importance as food flavourings or ornamental plants. Phalaenopsis aphrodite, an epiphytic orchid, is a major breeding parent of many commercial orchid hybrids. We provide a high-quality chromosome-scale assembly of the P. aphrodite genome. The total length of all scaffolds is 1025.1 Mb, with N50 scaffold size of 19.7 Mb. A total of 28 902 protein-coding genes were identified. We constructed an orchid genetic linkage map, and then anchored and ordered the genomic scaffolds along the linkage groups. We also established a high-resolution pachytene karyotype of P. aphrodite and completed the assignment of linkage groups to the 19 chromosomes using fluorescence in situ hybridization. We identified an expansion in the epiphytic orchid lineage of FRS5-like subclade associated with adaptations to the life in the canopy. Phylogenetic analysis further provides new insights into the orchid lineage-specific duplications of MADS-box genes, which might have contributed to the variation in labellum and pollinium morphology and its accessory structure. To our knowledge, this is the first orchid genome to be integrated with a SNP-based genetic linkage map and validated by physical mapping. The genome and genetic map not only offer unprecedented resources for increasing breeding efficiency in horticultural orchids but also provide an important foundation for future studies in adaptation genomics of epiphytes.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genoma de Planta/genética , Orchidaceae/genética , Melhoramento Vegetal/métodos , Adaptação Fisiológica/genética , Genoma de Planta/fisiologia , Cariotipagem
15.
Plant Cell Physiol ; 58(1): e9, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28111366

RESUMO

Orchidaceae, the orchid family, encompasses more than 25,000 species and five subfamilies. Due to their beautiful and exotic flowers, distinct biological and ecological features, orchids have aroused wide interest among both researchers and the general public. We constructed the Orchidstra database, a resource for orchid transcriptome assembly and gene annotations. The Orchistra database has been under active development since 2013. To accommodate the increasing amount of orchid transcriptome data and house more comprehensive information, Orchidstra 2.0 has been built with a new database system to store the annotations of 510,947 protein-coding genes and 161,826 noncoding transcripts, covering 18 orchid species belonging to 12 genera in five subfamilies of Orchidaceae. We have improved the N50 size of protein-coding genes, provided new functional annotations (including protein-coding gene annotations, protein domain/family information, pathways analysis, Gene Ontology term assignments, orthologous genes across orchid species, cross-links to the database of model species, and miRNA information), and improved the user interface with better website performance. We also provide new database functionalities for database searching and sequence retrieval. Moreover, the Orchidstra 2.0 database incorporates detailed RNA-Seq gene expression data from various tissues and developmental stages in different orchid species. The database will be useful for gene prediction and gene family studies, and for exploring gene expression in orchid species. The Orchidstra 2.0 database is freely accessible at http://orchidstra2.abrc.sinica.edu.tw.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Biologia Computacional/métodos , Ontologia Genética , Internet , Orchidaceae/classificação , Orchidaceae/genética , Proteínas de Plantas/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Especificidade da Espécie
16.
Plant Physiol ; 172(3): 1548-1562, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27677986

RESUMO

Ethylene is an essential hormone in plants that is involved in low-oxygen and reoxygenation responses. As a key transcription factor in ethylene signaling, ETHYLENE INSENSITIVE3 (EIN3) activates targets that trigger various responses. However, most of these targets are still poorly characterized. Through analyses of our microarray data and the published Arabidopsis (Arabidopsis thaliana) EIN3 chromatin immunoprecipitation sequencing data set, we inferred the putative targets of EIN3 during anoxia-reoxygenation. Among them, GDH2, which encodes one subunit of glutamate dehydrogenase (GDH), was chosen for further studies for its role in tricarboxylic acid cycle replenishment. We demonstrated that both GDH1 and GDH2 are induced during anoxia and reoxygenation and that this induction is mediated via ethylene signaling. In addition, the results of enzymatic assays showed that the level of GDH during anoxia-reoxygenation decreased in the ethylene-insensitive mutants ein2-5 and ein3eil1 Global metabolite analysis indicated that the deamination activity of GDH might regenerate 2-oxoglutarate, which is a cosubstrate that facilitates the breakdown of alanine by alanine aminotransferase when reoxygenation occurs. Moreover, ineffective tricarboxylic acid cycle replenishment, disturbed carbohydrate metabolism, reduced phytosterol biosynthesis, and delayed energy regeneration were found in gdh1gdh2 and ethylene mutants during reoxygenation. Taken together, these data illustrate the essential role of EIN3-regulated GDH activity in metabolic adjustment during anoxia-reoxygenation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Etilenos/farmacologia , Glutamato Desidrogenase/metabolismo , Oxigênio/metabolismo , Anaerobiose/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Metabolismo dos Carboidratos/efeitos dos fármacos , Proteínas de Ligação a DNA , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fenótipo , Fitosteróis/biossíntese , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
17.
Plant Biotechnol J ; 14(1): 284-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25917508

RESUMO

Orchids exhibit a range of unique flower shapes and are a valuable ornamental crop. MADS-box transcription factors are key regulatory components in flower initiation and development. Changing the flower shape and flowering time can increase the value of the orchid in the ornamental horticulture industry. In this study, 28 MADS-box genes were identified from the transcriptome database of the model orchid Erycina pusilla. The full-length genomic sequences of these MADS-box genes were obtained from BAC clones. Of these, 27 were MIKC-type EpMADS (two truncated forms) and one was a type I EpMADS. Eleven EpMADS genes contained introns longer than 10 kb. Phylogenetic analysis classified the 24 MIKC(c) genes into nine subfamilies. Three specific protein motifs, AG, FUL and SVP, were identified and used to classify three subfamilies. The expression profile of each EpMADS gene correlated with its putative function. The phylogenetic analysis was highly correlated with the protein domain identification and gene expression results. Spatial expression of EpMADS6, EpMADS12 and EpMADS15 was strongly detected in the inflorescence meristem, floral bud and seed via in situ hybridization. The subcellular localization of the 28 EpMADS proteins was also investigated. Although EpMADS27 lacks a complete MADS-box domain, EpMADS27-YFP was localized in the nucleus. This characterization of the orchid MADS-box family genes provides useful information for both orchid breeding and studies of flowering and evolution.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Domínio MADS/genética , Família Multigênica , Orchidaceae/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Bases de Dados Genéticas , Éxons/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons/genética , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Motivos de Nucleotídeos , Especificidade de Órgãos/genética , Filogenia , Domínios Proteicos , Frações Subcelulares/metabolismo
18.
PLoS Pathog ; 10(8): e1004288, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144637

RESUMO

Pseudomonas taiwanensis is a broad-host-range entomopathogenic bacterium that exhibits insecticidal activity toward agricultural pests Plutella xylostella, Spodoptera exigua, Spodoptera litura, Trichoplusia ni and Drosophila melanogaster. Oral infection with different concentrations (OD = 0.5 to 2) of wild-type P. taiwanensis resulted in insect mortality rates that were not significantly different (92.7%, 96.4% and 94.5%). The TccC protein, a component of the toxin complex (Tc), plays an essential role in the insecticidal activity of P. taiwanensis. The ΔtccC mutant strain of P. taiwanensis, which has a knockout mutation in the tccC gene, only induced 42.2% mortality in P. xylostella, even at a high bacterial dose (OD = 2.0). TccC protein was cleaved into two fragments, an N-terminal fragment containing an Rhs-like domain and a C-terminal fragment containing a Glt symporter domain and a TraT domain, which might contribute to antioxidative stress activity and defense against macrophagosis, respectively. Interestingly, the primary structure of the C-terminal region of TccC in P. taiwanensis is unique among pathogens. Membrane localization of the C-terminal fragment of TccC was proven by flow cytometry. Sonicated pellets of P. taiwanensis ΔtccC strain had lower toxicity against the Sf9 insect cell line and P. xylostella larvae than the wild type. We also found that infection of Sf9 and LD652Y-5d cell lines with P. taiwanensis induced apoptotic cell death. Further, natural oral infection by P. taiwanensis triggered expression of host programmed cell death-related genes JNK-2 and caspase-3.


Assuntos
Toxinas Bacterianas/metabolismo , Mariposas/parasitologia , Controle Biológico de Vetores/métodos , Pseudomonas/patogenicidade , Animais , Toxinas Bacterianas/genética , Western Blotting , Citometria de Fluxo , Técnicas de Inativação de Genes , Imuno-Histoquímica , Insetos/parasitologia , Pseudomonas/genética , Pseudomonas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Virulência
19.
J Exp Bot ; 67(9): 2745-60, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27029354

RESUMO

SNF1 RELATED PROTEIN KINASE 1 (SnRK1) is proposed to be a central integrator of the plant stress and energy starvation signalling pathways. We observed that the Arabidopsis SnRK1.1 dominant negative mutant (SnRK1.1 (K48M) ) had lower tolerance to submergence than the wild type, suggesting that SnRK1.1-dependent phosphorylation of target proteins is important in signalling pathways triggered by submergence. We conducted quantitative phosphoproteomics and found that the phosphorylation levels of 57 proteins increased and the levels of 27 proteins decreased in Col-0 within 0.5-3h of submergence. Among the 57 proteins with increased phosphorylation in Col-0, 38 did not show increased phosphorylation levels in SnRK1.1 (K48M) under submergence. These proteins are involved mainly in sugar and protein synthesis. In particular, the phosphorylation of MPK6, which is involved in regulating ROS responses under abiotic stresses, was disrupted in the SnRK1.1 (K48M) mutant. In addition, PTP1, a negative regulator of MPK6 activity that directly dephosphorylates MPK6, was also regulated by SnRK1.1. We also showed that energy conservation was disrupted in SnRK1.1 (K48M) , mpk6, and PTP1 (S7AS8A) under submergence. These results reveal insights into the function of SnRK1 and the downstream signalling factors related to submergence.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Metabolismo Energético/fisiologia , Imersão , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Transdução de Sinais/fisiologia , Estresse Fisiológico
20.
Plant Cell ; 25(7): 2699-713, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23897923

RESUMO

Transcriptional control plays an important role in regulating submergence responses in plants. Although numerous genes are highly induced during hypoxia, their individual roles in hypoxic responses are still poorly understood. Here, we found that expression of genes that encode members of the WRKY transcription factor family was rapidly and strongly induced upon submergence in Arabidopsis thaliana, and this induction correlated with induction of a large portion of innate immunity marker genes. Furthermore, prior submergence treatment conferred higher resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. Among the WRKY genes tested, WRKY22 had the highest level of induction during the early stages of submergence. Compared with the wild type, WRKY22 T-DNA insertion mutants wrky22-1 and wrky22-2 had lower disease resistance and lower induction of innate immunity markers, such as FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1) and WRKY53, after submergence. Furthermore, transcriptomic analyses of wrky22-2 and chromatin immunoprecipitation identified several potential targets of WRKY22, which included genes encoding a TIR domain-containing protein, a plant peptide hormone, and many OLIGO PEPTIDE TRANSPORTER genes, all of which may lead to induction of innate immunity. In conclusion, we propose that submergence triggers innate immunity in Arabidopsis via WRKY22, a response that may protect against a higher probability of pathogen infection either during or after flooding.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Doenças das Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Western Blotting , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Imersão , Modelos Genéticos , Mutagênese Insercional , Oxigênio/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Pseudomonas syringae/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA