Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mech Ageing Dev ; 220: 111943, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38762036

RESUMO

This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.


Assuntos
Senescência Celular , Músculo Liso Vascular , Sirtuína 1 , Humanos , Senescência Celular/fisiologia , Sirtuína 1/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Animais , Transdução de Sinais/fisiologia , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Sirtuínas/metabolismo , Estresse Oxidativo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Óxido Nítrico/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia
2.
Exp Biol Med (Maywood) ; 248(23): 2341-2350, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38158807

RESUMO

Human cardiac fibroblasts (HCFs) have mRNA transcripts that encode different mechanosensitive ion channels and channel regulatory proteins whose functions are not known yet. The primary goal of this work was to define the mechanosensitive ion channelome of HCFs. The most common type of cationic channel is the transient receptor potential (TRP) family, which is followed by the TWIK-related K+ channel (TREK), transmembrane protein 63 (TMEM63), and PIEZO channel (PIEZO) families. In the sodium-dependent NON-voltage-gated channel (SCNN) subfamily, only SCNN1D was shown to be highly expressed. Particular members of the acid-sensing ion channel (ASIC) (ASIC1 and ASIC3) subfamilies were also significantly expressed. The transcripts per kilobase million (TPMs) for Piezo 2 were almost 100 times less abundant than those for Piezo 1. The tandem of P domains in a weak inward rectifying K+ channel (TWIK)-2 channel, TWIK-related acid-sensitive K+ channel (TASK)-5, TASK-1, and the TWIK-related K1 (TREK-1) channel were the four most prevalent types in the K2P subfamily. The highest expression in the TRPP subfamily was found for PKD2 and PKD1, while in the TRPM subfamily, it was found for TRPM4, TRPM7, and TRPM3. TRPV2, TRPV4, TRPV3, and TRPV6 (all members of the TRPV subfamily) were also substantially expressed. A strong expression of the TRPC1, TRPC4, TRPC6, and TRPC2 channels and all members of the TRPML subfamily (MCOLN1, MCOLN2, and MCOLN3) was also shown. In terms of the transmembrane protein 16 (TMEM16) family, the HCFs demonstrated significant expression of the TMEM16H, TMEM16F, TMEM16J, TMEM16A, and TMEM16G channels. TMC3 is the most expressed channel in HCFs of all known members of the transmembrane channel-like protein (TMC) family. This analysis of the mechanosensitive ionic channel transcriptome in HCFs: (1) agrees with previously documented findings that all currently identified mechanosensitive channels play a significant and well recognized physiological function in elucidating the mechanosensitive characteristics of HCFs; (2) supports earlier preliminary reports that point to the most common expression of the TRP mechanosensitive family in HCFs; and (3) points to other new mechanosensitive channels (TRPC1, TRPC2, TWIK-2, TMEM16A, ASIC1, and ASIC3).


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Humanos , Transcriptoma , Coração , RNA Mensageiro/genética , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
3.
Biol Direct ; 18(1): 70, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37899484

RESUMO

BACKGROUND: The study aimed to identify transcripts of specific ion channels in rat ventricular cardiomyocytes and determine their potential role in the regulation of ionic currents in response to mechanical stimulation. The gene expression levels of various ion channels in freshly isolated rat ventricular cardiomyocytes were investigated using the RNA-seq technique. We also measured changes in current through CaV1.2 channels under cell stretching using the whole-cell patch-clamp method. RESULTS: Among channels that showed mechanosensitivity, significant amounts of TRPM7, TRPC1, and TRPM4 transcripts were found. We suppose that the recorded L-type Ca2+ current is probably expressed through CaV1.2. Furthermore, stretching cells by 6, 8, and 10 µm, which increases ISAC through the TRPM7, TRPC1, and TRPM4 channels, also decreased ICa,L through the CaV1.2 channels in K+ in/K+ out, Cs+ in/K+ out, K+ in/Cs+ out, and Cs+ in/Cs+ out solutions. The application of a nonspecific ISAC blocker, Gd3+, during cell stretching eliminated ISAC through nonselective cation channels and ICa,L through CaV1.2 channels. Since the response to Gd3+ was maintained in Cs+ in/Cs+ out solutions, we suggest that voltage-gated CaV1.2 channels in the ventricular myocytes of adult rats also exhibit mechanosensitive properties. CONCLUSIONS: Our findings suggest that TRPM7, TRPC1, and TRPM4 channels represent stretch-activated nonselective cation channels in rat ventricular myocytes. Probably the CaV1.2 channels in these cells exhibit mechanosensitive properties. Our results provide insight into the molecular mechanisms underlying stretch-induced responses in rat ventricular myocytes, which may have implications for understanding cardiac physiology and pathophysiology.


Assuntos
Miócitos Cardíacos , Canais de Cátion TRPM , Ratos , Animais , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , RNA , Ventrículos do Coração/metabolismo , Cátions/metabolismo , Cátions/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA