Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0242622, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951567

RESUMO

Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in situ. Consequently, soils in HM-contaminated sites such as the U.S. Environmental Protection Agency (EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential ramifications for the health of organisms, including humans, that live nearby. Further, several studies have shown that heavy metal-resistant (HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-contaminated soils could potentially act as reservoirs that could disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility, topsoil samples were collected from six public locations in the zip code 35207 (the home of the North Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn, and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated HM concentrations correlated with reduced microbial diversity and altered community structure. While there was no difference between zip codes in the proportion of total culturable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR. Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative frequencies in 35207 for several AMR genes related to both specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that chronic HM pollution alters the soil bacterial community structure in ecologically meaningful ways and may also select for bacteria with increased potential to contribute to AMR in human disease. IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experiments, but few studies have documented this effect in polluted soils. Moreover, despite decades of awareness of heavy metal contamination at the EPA Superfund site in North Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil microbiome. Specifically, this work advances the understanding of the relationship between heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-resistant infections in addition to the direct health consequences of heavy metals. Our work provides important information relevant to both political and scientific efforts to advance environmental justice for the communities that call Superfund neighborhoods home.

2.
Biol Bull ; 243(1): 28-37, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36108035

RESUMO

AbstractAccurate species delimitation is crucial to understanding biodiversity. In the northern Gulf of Mexico, recent genetic evidence has suggested that the tricolor Luidia lawrencei is not a species distinct from the gray Luidia clathrata. We collected Luidia specimens from Apalachee Bay, Florida, and morphologically identified 11 as L. clathrata and 16 as L. lawrencei. We sequenced 1074 bp of the cytochrome c oxidase subunit I (COI) and found ~14% divergence between L. clathrata and L. lawrencei, suggesting two distinct species (within-species divergence was <1%). Two specimens were phenotypically L. lawrencei (i.e., tricolor morph) but mitochondrially were L. clathrata. Our findings lend support to maintaining L. clathrata and L. lawrencei as distinct species. However, the species boundary between these two taxa may be porous, and ongoing hybridization may occur when the two species are found in sympatry. Future work with nuclear markers is warranted to determine the frequency of hybridization and the extent of introgression. Clarifying the genetic relationship between these species will provide a baseline for assessing ongoing changes in connectivity of these two highly abundant sea stars in the rapidly warming northern Gulf of Mexico.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Estrelas-do-Mar , Animais , Sequência de Bases , Complexo IV da Cadeia de Transporte de Elétrons/genética , Golfo do México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA