Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675074

RESUMO

Itching is an unpleasant sensation that provokes the desire to scratch. In general, itching is caused by dermatologic diseases, but it can also be caused by systemic diseases. Since itching hampers patients' quality of life, it is important to understand the appropriate treatment and pathophysiology of pruritus caused by systemic diseases to improve the quality of life. Mechanisms are being studied through animal or human studies, and various treatments are being tested through clinical trials. We report current trends of two major systemic diseases: chronic kidney disease and cholestatic liver disease. This review summarizes the causes and pathophysiology of systemic diseases with pruritus and appropriate treatments. This article will contribute to patients' quality of life. Further research will help understand the mechanisms and develop new strategies in the future.


Assuntos
Colestase , Insuficiência Renal Crônica , Animais , Humanos , Qualidade de Vida , Prurido/terapia , Prurido/tratamento farmacológico , Colestase/complicações , Colestase/terapia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Sensação
2.
Acta Derm Venereol ; 101(8): adv00517, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34184069

RESUMO

Carvacrol, a natural transient receptor potential vanilloid-3 activator, has been reported to cause pruritus in mice. This study aimed to evaluate the effects of carvacrol and various antipruritic agents in humans. A stimulation test with carvacrol, ß-alanine, and histamine was performed. After application of the pruritic solutions, the skin was stimulated with pinpricks. In inhibition test A, Forsythia suspensa extract, containing forsythoside B (a transient receptor potential vanilloid-3 inhibitor), was applied by pricking prior to stimulation with pruritogens. In inhibition test B, olopatadine solution, tacrolimus ointment, and Scutellaria baicalensis root extract were applied, and carvacrol was applied to the same region. Carvacrol induces moderate pruritus in humans. The pruritus was relieved by Forsythia suspensa extract and olopatadine solution after 20 min of application and by tacrolimus ointment and Scutellaria baicalenis extract after 24 h of application. These results suggest that carvacrol is a pruritogen in humans, and that carvacrol-induced pruritus is inhibited by various antipruritic agents.


Assuntos
Prurido , Canais de Potencial de Receptor Transitório , Antipruriginosos/farmacologia , Antipruriginosos/uso terapêutico , Humanos , Queratinócitos , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Testes Cutâneos , Canais de Cátion TRPV
3.
J Fluoresc ; 30(6): 1287-1293, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32833117

RESUMO

Intracellular calcium can be monitored by various calcium-specific fluorescent dyes including gene-encoded calcium indicators (GECI). GCaMP is a widely-used GECI that emits green fluorescence proportional to the level of intracellular calcium. However, since many tagging proteins also emit green fluorescence, GCaMP cannot be used with another green fluorescent protein. Therefore, it would be ideal to develop a GECI that has a distinct color profile other than green. In this regard, we developed a novel blue fluorescent calcium indicator modified from GCaMP called Ser222-Ala229-Cys330-BCaMP3. Specifically, a simple threonine to histidine substitution to a green fluorescent Cys330-GCaMP3 successfully changed its fluorescence to blue (Cys330-BCaMP3, B for blue). Furthermore, a couple of additional amino acid substitutions resulted in more enhanced blue fluorescence intensity. Among other Cys330-BCaMP3 variants, it was found that Ser222-Ala229-Cys330-BCaMP3 exhibited the strongest blue fluorescence intensity. When Ser222-Ala229-Cys330-BCaMP3 was co-expressed with TRPA1 - a non-selective cation channel - in HEK293T cells, it showed moderate blue fluorescence. One of the drawbacks of Ser222-Ala229-Cys330-BCaMP3 was that the fluorescence intensity was not enough when cells were cultured under 37°C. However, this limitation was circumvented by lowering cell culture temperature to 28°C, allowing much more enhanced blue fluorescence. Although Ser222-Ala229-Cys330-BCaMP3 mandates further optimization, the present study has found a promising blue fluorescent GECI that is derived from GCaMP3.


Assuntos
Cálcio/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Substituição de Aminoácidos , Cor , Fluorescência , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Temperatura
5.
Biochem Biophys Res Commun ; 495(1): 1208-1213, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183725

RESUMO

Harmful maternal behaviors, such as drinking and smoking, negatively affect embryonic development. In contrast, regular maternal exercise is believed to be beneficial to the fetus. Although it is not surprising that voluntary physical activities are advantageous to fetal development, it remains unclear whether involuntary maternal exercise has similar effects. The constituents of the amniotic fluid (AF) inevitably reflect the maternal plasma. Therefore, it is speculated that exercise-induced changes in maternal plasma can influence fetal development through changes in AF composition. Therefore, we investigated the effect of AF on fetal neurodevelopment and changes in AF composition after involuntary swimming exercise (SE) in an animal model. We found that there was a severe reduction in the number of embryos implanted in the uterus of SE rats. Surprisingly, cortisol level (an inducible stress hormone) was significantly increased in AF from SE rats. In contrast, the growth factors NGF and VEGF were reduced in the AF from SE rats. In the cultured embryonic cortical neurons, the treatment of control (CTL) rat-derived AF significantly increased the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated signaling that is essential for fetal neurodevelopment. However, the AF extracted from SE rats reversely suppressed the phosphorylation of ERK1/2-mediated signaling in cortical neurons compared to that in CTL rats. Indeed, the co-treatment with control AF and dexamethasone, a synthetic glucocorticoid, inhibited the phosphorylation of ERK1/2 in a dose-dependent manner. This finding suggests that the inhibition of ERK1/2 can be attributed to increased cortisol level in AF resulting from involuntary exercise. Therefore, involuntary maternal swimming increases cortisol level in AF, which ultimately hinders the ERK1/2 signaling pathway in embryonic neurons. These findings also suggest that involuntary maternal exercise can have undesirable effects on fetal neurodevelopment, which is potentially mediated by elevated AF cortisol level.


Assuntos
Líquido Amniótico/metabolismo , Desenvolvimento Embrionário/fisiologia , Hidrocortisona/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/metabolismo , Prenhez/metabolismo , Estresse Fisiológico/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Condicionamento Físico Animal/métodos , Gravidez , Ratos , Ratos Sprague-Dawley , Natação , Volição/fisiologia
6.
Phytother Res ; 32(4): 616-624, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29250842

RESUMO

Poncirus trifoliata (L.) Raf. belongs to the family Rutaceae in the genus Poncirus. Its fruits are widely used to alleviate symptoms of various disorders. The mature fruit (MF) possesses anticancer and antiinflammatory activities. Extracts of the dried, immature fruit, Poncirus fructus (PF) are widely used as a traditional medicine for ameliorating symptoms of digestive dysfunction in East Asia. Molecular and cellular mechanisms underlying the effects of MF and PF extracts on cancer, inflammation, and gastrointestinal disorders have been extensively studied in the past decade. This review summarizes recent findings on the anticancer and antiinflammatory effects of MF and the prokinetic effects of PF. Although the therapeutic effects of MF and PF have been clearly elucidated, in-depth further clinical studies are still required to completely verify the clinical efficacy and safety of the fruits of P. trifoliata (L.) Raf.


Assuntos
Anormalidades do Sistema Digestório/tratamento farmacológico , Frutas/química , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Extratos Vegetais/química , Poncirus/química , Humanos
7.
J Fluoresc ; 27(6): 2187-2193, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28791525

RESUMO

Genetically encoded calcium indicators (GECI) such as GCaMP3 are attracting significant attention as a good option for measuring intracellular calcium levels. Recently, a modified GCaMP3 called dCys-GCaMP3 was developed by replacing two threonine residues with cysteines. dCys-GCaMP3 proved to be a better calcium indicator, but it was not clear how and why the two cysteine residues were able to enhance the protein's calcium sensitivity. The aim of the present study was to investigate the possible roles of these cysteine residues in dCys-GCaMP3. dCys-GCaMP3 (Thr330Cys;Thr364Cys) exhibited enhanced fluorescence intensity compared to the canonical GCaMP3 in calcium imaging experiments. However, substitution of a single residue at position 330 with cysteine (Thr330Cys) also afforded comparable sensitivity to GCaMP3. In contrast, the other single residue substitution at position 364 with cysteine (Thr364Cys) failed to enhance calcium sensitivity, showing that cysteine at position 330 is essential to improve calcium sensitivity. Thr330Cys substitution in the GCaMP3 or "Cys330-GCaMP3" showed significantly reduced background fluorescence, and the fluorescence intensity was proportional to the amount of DNA used to transfect the cells used in the study. The substitute had to be cysteine, because replacement with other amino acids such as alanine, valine, and aspartate did not improve GCaMP3's calcium sensitivity. Cys330-GCaMP3 outperformed a synthetic calcium-specific indicator, Fluo-3, in various calcium imaging experiments. Thus, the present study asserts that substituting the threonine at position 330 in GCaMP3 with cysteine is essential to enhance calcium sensitivity, and suggests that Cys330-GCaMP3 can be used as a potent fluorescent calcium indicator to measure intracellular calcium levels.


Assuntos
Cálcio/metabolismo , Cisteína/química , Proteínas de Fluorescência Verde/metabolismo , Imagem Molecular/métodos , Proteínas Recombinantes de Fusão/metabolismo , Substituição de Aminoácidos , Sinalização do Cálcio , Calmodulina/química , Calmodulina/metabolismo , Cisteína/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Treonina/química , Treonina/genética
8.
Molecules ; 21(10)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27669201

RESUMO

In this study, we synthesized the valine (Val)-conjugated amide prodrug of doxorubicin (DOX) by the formation of amide bonds between DOX and Val. The synthesis of the DOX-Val prodrug was identified by a proton nuclear magnetic resonance (¹H-NMR) assay. In the MCF-7 cells (human breast adenocarcinoma cell; amino acid transporter-positive cell), the cellular accumulation efficiency of DOX-Val was higher than that of DOX according to the flow cytometry analysis data. Using confocal laser scanning microscopy (CLSM) imaging, it was confirmed that DOX-Val as well as DOX was mainly distributed in the nucleus of cancer cells. DOX-Val was intravenously administered to rats at a dose of 4 mg/kg, and the plasma concentrations of DOX-Val (prodrug) and DOX (formed metabolite) were quantitatively determined. Based on the systemic exposure (represented as area under the curve (AUC) values) of DOX-Val (prodrug) and DOX (formed metabolite), approximately half of DOX-Val seemed to be metabolized into DOX. However, it is expected that the remaining DOX-Val may exert improved cellular uptake efficiency in cancer cells after its delivery to the cancer region.


Assuntos
Amidas/química , Doxorrubicina/química , Doxorrubicina/farmacocinética , Pró-Fármacos , Valina/química , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Doxorrubicina/síntese química , Doxorrubicina/metabolismo , Citometria de Fluxo , Humanos , Células MCF-7 , Masculino , Espectroscopia de Prótons por Ressonância Magnética , Ratos
9.
Biol Res ; 48: 44, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26243199

RESUMO

BACKGROUND: The fetus is surrounded by the amniotic fluid (AF) contained by the amniotic sac of the pregnant female. The AF is directly conveyed to the fetus during pregnancy. Although AF has recently been reported as an untapped resource containing various substances, it remains unclear whether the AF could influence fetal neurodevelopment. RESULTS: We used AF that was extracted from embryos at 16 days in pregnant SD rat and exposed the AF to the neural cells derived from the embryos of same rat. We found that the treatment of AF to cortical neurons increased the phosphorylation in ERK1/2 that is necessary for fetal neurodevelopment, which was inhibited by the treatment of MEK inhibitors. Moreover, we found the subsequent inhibition of glycogen synthase kinase-3 (GSK-3), which is an important determinant of cell fate in neural cells. Indeed, AF increased the neural clustering of cortical neurons, which revealed that the clustered cells were proliferating neural progenitor cells. Accordingly, we confirmed the ability of AF to increase the neural progenitor cells through neurosphere formation. Furthermore, we showed that the ERK/GSK-3 pathway was involved in AF-mediated neurosphere enlargement. CONCLUSIONS: Although the placenta mainly supplies oxygenated blood, nutrient substances for fetal development, these findings further suggest that circulating-AF into the fetus could affect fetal neurodevelopment via MAP kinases-derived GSK-3 pathway during pregnancy. Moreover, we suggest that AF could be utilized as a valuable resource in the field of regenerative medicine.


Assuntos
Líquido Amniótico/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco Neurais/fisiologia , Animais , Diferenciação Celular , Feminino , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Células-Tronco Neurais/citologia , Fosforilação/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
10.
Nature ; 455(7217): 1210-5, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18724360

RESUMO

Calcium (Ca(2+))-activated chloride channels are fundamental mediators in numerous physiological processes including transepithelial secretion, cardiac and neuronal excitation, sensory transduction, smooth muscle contraction and fertilization. Despite their physiological importance, their molecular identity has remained largely unknown. Here we show that transmembrane protein 16A (TMEM16A, which we also call anoctamin 1 (ANO1)) is a bona fide Ca(2+)-activated chloride channel that is activated by intracellular Ca(2+) and Ca(2+)-mobilizing stimuli. With eight putative transmembrane domains and no apparent similarity to previously characterized channels, ANO1 defines a new family of ionic channels. The biophysical properties as well as the pharmacological profile of ANO1 are in full agreement with native Ca(2+)-activated chloride currents. ANO1 is expressed in various secretory epithelia, the retina and sensory neurons. Furthermore, knockdown of mouse Ano1 markedly reduced native Ca(2+)-activated chloride currents as well as saliva production in mice. We conclude that ANO1 is a candidate Ca(2+)-activated chloride channel that mediates receptor-activated chloride currents in diverse physiological processes.


Assuntos
Cálcio/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Anoctamina-1 , Cálcio/farmacologia , Canais de Cloreto/química , Canais de Cloreto/deficiência , Canais de Cloreto/genética , Condutividade Elétrica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Transporte de Íons/efeitos dos fármacos , Camundongos , Oócitos/metabolismo , Pilocarpina/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Salivação/efeitos dos fármacos , Xenopus
11.
Biopharm Drug Dispos ; 35(1): 60-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24151179

RESUMO

Anti-cancer agents delivered to cancer cells often show multi-drug resistance (MDR) due to expulsion of the agents. One way to address this problem is to increase the accumulation of anti-cancer agents in cells via amino acid transporters. Thus, val-lapatinib and tyr-lapatinib were newly synthesized by adding valine and tyrosine moieties, respectively, to the parent anti-cancer agent lapatinib without stability issues in rat plasma. Val-lapatinib and tyr-lapatinib showed enhanced anti-cancer effects versus the parent lapatinib in various cancer cell lines, including human breast cancer cells (MDA-MB-231, MCF7) and lung cancer cells (A549), but not in non-cancerous MDCK-II cells. A glutamine uptake study revealed that both val-lapatinib and tyr-lapatinib, but not the parent lapatinib, inhibited glutamine transport in MDA-MB-231 and MCF7 cells, suggesting the involvement of amino acid transporters. In conclusion, val-lapatinib and tyr-lapatinib have enhanced anti-cancer effects, likely due to an increased uptake of the agents into cancer cells via amino acid transporters. The present data suggest that amino acid transporters may be an effective drug delivery target to increase the uptake of anti-cancer agents, leading to one method of overcoming MDR in cancer cells.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Antineoplásicos/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Tirosina/química , Valina/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cães , Glutamina/metabolismo , Humanos , Lapatinib , Células Madin Darby de Rim Canino , Inibidores de Proteínas Quinases/química , Quinazolinas/química
12.
Cell Calcium ; 123: 102924, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38964236

RESUMO

Anoctamin 1 (ANO1/TMEM16A) encodes a Ca2+-activated Cl- channel. Among ANO1's many physiological functions, it plays a significant role in mediating nociception and itch. ANO1 is activated by intracellular Ca2+ and depolarization. Additionally, ANO1 is activated by heat above 44 °C, suggesting heat as another activation stimulus. ANO1 is highly expressed in nociceptors, indicating a role in nociception. Conditional Ano1 ablation in dorsal root ganglion (DRG) neurons results in a reduction in acute thermal pain, as well as thermal and mechanical allodynia or hyperalgesia evoked by inflammation or nerve injury. Pharmacological interventions also lead to a reduction in nocifensive behaviors. ANO1 is functionally linked to the bradykinin receptor and TRPV1. Bradykinin stimulates ANO1 via IP3-mediated Ca2+ release from intracellular stores, whereas TRPV1 stimulates ANO1 via a combination of Ca2+ influx and release. Nerve injury causes upregulation of ANO1 expression in DRG neurons, which is blocked by ANO1 antagonists. Due to its role in nociception, strong and specific ANO1 antagonists have been developed. ANO1 is also expressed in pruritoceptors, mediating Mas-related G protein-coupled receptors (Mrgprs)-dependent itch. The activation of ANO1 leads to chloride efflux and depolarization due to high intracellular chloride concentrations, causing pain and itch. Thus, ANO1 could be a potential target for the development of new drugs treating pain and itch.

13.
Int Immunopharmacol ; 133: 112113, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657498

RESUMO

BACKGROUND: Phytosphingosine and its derivative are known for their skin-protective properties. While mYG-II-6, a phytosphingosine derivative, has shown anti-inflammatory and antipsoriatic effects, its potential antipruritic qualities have yet to be explored. This study aimed to investigate mYG-II-6's antipruritic properties. METHODS: The calcium imaging technique was employed to investigate the activity of ion channels and receptors. Mast cell degranulation was confirmed through the ß-hexosaminidase assay. Additionally, in silico molecular docking and an in vivo mouse scratching behavior test were utilized. RESULTS: Using HEK293T cells transfected with H1R and TRPV1, we examined the impact of mYG-II-6 on histamine-induced intracellular calcium rise, a key signal in itch-mediating sensory neurons. Pretreatment with mYG-II-6 significantly reduced histamine-induced calcium levels and inhibited TRPV1 activity, suggesting its role in blocking the calcium influx channel. Additionally, mYG-II-6 suppressed histamine-induced calcium increase in primary cultures of mouse dorsal root ganglia, indicating its potential antipruritic effect mediated by histamine. Interestingly, mYG-II-6 exhibited inhibitory effects on human MRGPRX2, a G protein-coupled receptor involved in IgE-independent mast cell degranulation. However, it did not inhibit mouse MrgprB2, the ortholog of human MRGPRX2. Molecular docking analysis revealed that mYG-II-6 selectively interacts with the binding pocket of MRGPRX2. Importantly, mYG-II-6 suppressed histamine-induced scratching behaviors in mice. CONCLUSIONS: Our findings show that mYG-II-6 can alleviate histamine-induced itch sensation through dual mechanisms. This underscores its potential as a versatile treatment for various pruritic conditions.


Assuntos
Degranulação Celular , Histamina , Mastócitos , Receptores Acoplados a Proteínas G , Canais de Cátion TRPV , Animais , Humanos , Masculino , Camundongos , Antipruriginosos/farmacologia , Antipruriginosos/uso terapêutico , Cálcio/metabolismo , Degranulação Celular/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Células HEK293 , Histamina/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteínas do Tecido Nervoso/metabolismo , Prurido/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Esfingosina/metabolismo , Canais de Cátion TRPV/metabolismo
14.
Eur J Pharmacol ; 981: 176896, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147012

RESUMO

Ursolic acid (UA), a pentacyclic triterpene, exhibits diverse pharmacological effects, including potential treatment for allergic diseases. It downregulates thymic stromal lymphopoietin (TSLP) and disrupts mast cell signaling pathways. However, the exact molecular mechanism by which UA interferes with mast cell action remains unclear. Therefore, the current study aimed to uncover molecular entities underlying the effect of UA on mast cells and its potential antipruritic effect, specifically investigating its modulation of key molecules such as TRPV4, PAR2, and MRGPRX2, which are involved in TSLP regulation and sensation. Calcium imaging experiments revealed that UA pretreatment significantly suppressed MRGPRX2 activation (and its mouse orthologue MrgprB2), a G protein-coupled receptor predominantly expressed in mast cells. Molecular docking predictions suggested potential interactions between UA and MRGPRX2/MrgprB2. UA pretreatment also reduced mast cell degranulation through MRGPRX2 and MrgprB2-dependent mechanisms. In a dry skin mouse model, UA administration decreased tryptase and TSLP production in the skin, and diminished TSLP response in the sensory neurons. While PAR2 and TRPV4 activation enhances TSLP production, UA did not inhibit their activity. Notably, UA attenuated compound 48/80-induced scratching behaviors in mice and suppressed spontaneous scratching in a dry skin model. The present study confirms the effective inhibition of UA on MRGPRX2/MrgprB2, leading to reduced mast cell degranulation and suppressed scratching behaviors. These findings highlight the potential of UA as an antipruritic agent for managing various allergy- or itch-related conditions.

15.
Xenobiotica ; 43(4): 355-67, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23020787

RESUMO

The oral (po) bioavailability of gemifloxacin mesylate in rats and its possible association with efflux transporters was investigated. The apparent permeabilities (Papp) of gemifloxacin across the Caco-2 cell monolayer were 1.20 ± 0.09 × 10(-5) cm/s for apical to basal (absorptive) transport, and 2.13 ± 0.6 × 10(-5) cm/s for basal to apical (secretory) transport for a 5-500 µM concentration range, suggesting the involvement of a carrier-mediated efflux in the secretory transport. The secretory transport in Caco-2 cells was significantly decreased by MRP2 (MK571) and BCRP (Ko143) inhibitors. The secretory transport was distinct in MDCKII/P-gp, MDCKII/MRP2 and MDCKII/BCRP cells, and the affinity was highest for MRP2, followed by BCRP and P-gp. The efflux was significantly decreased by verapamil and Ko143, but not significantly by MK571. The comparative po bioavailability in rats was increased by the preadministration of Ko143 (four-fold), MK571 (two-fold) and verapamil (two-fold). Efflux transporters appeared to significantly limit the bioavailability of gemifloxacin in rats, suggesting their possible contribution to the low bioavailability of the drug in the human (70%).


Assuntos
Antibacterianos/metabolismo , Fluoroquinolonas/metabolismo , Absorção Intestinal , Proteínas de Membrana Transportadoras/metabolismo , Naftiridinas/metabolismo , Quinolonas/metabolismo , Administração Oral , Animais , Antibacterianos/sangue , Antibacterianos/química , Antibacterianos/farmacocinética , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Cães , Fluoroquinolonas/sangue , Fluoroquinolonas/química , Fluoroquinolonas/farmacocinética , Gemifloxacina , Humanos , Concentração Inibidora 50 , Cinética , Células Madin Darby de Rim Canino , Masculino , Naftiridinas/sangue , Naftiridinas/química , Naftiridinas/farmacocinética , Quinolonas/sangue , Quinolonas/química , Quinolonas/farmacocinética , Ratos , Ratos Sprague-Dawley , Verapamil/farmacologia
16.
Pharmacology ; 92(3-4): 191-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24080610

RESUMO

BACKGROUND AND PURPOSE: Poncirus fructus (PF), also known as the dried immature fruit of Poncirus trifoliata (L.) Raf., has long been used as a cure for the treatment of various gastrointestinal disorders in eastern Asia. Recently, it was reported that naringin, a flavonoid constituent of the PF extract, causes the activation of ghrelin receptor in vitro. Although the ghrelin receptor is involved in the enhancement of intestinal motility, there are no studies as yet involving in vivo action of naringin. Therefore, the purpose of the present study is to investigate whether naringin exhibits a prokinetic effect in vivo. METHODS: We measured the intestinal transit rate in rats with gastrointestinal motility dysfunction (GMD) and performed a pharmacokinetic analysis of naringin to investigate the effect of naringin on prokinetic activity in vivo. RESULTS: The results of this study show that the aqueous extract of PF and its constituent naringin have a strong prokinetic activity in GMD rats via activation of the ghrelin receptor. Surprisingly, pharmacokinetic analysis revealed that naringin has low bioavailability (11%), implying that the prokinetic effect of naringin was largely due to the local activation of ghrelin receptor in the intestine rather than a systemic effect after absorption. Indeed, it turned out that intravenous administration of naringin led to a lower prokinetic effect than when administrated orally to rats, indicating that naringin prefers to act on the intestinal wall rather than getting absorbed into the systemic circuit. This local mode of action might be advantageous for preventing possible systemic side effects since naringin is not well absorbed into the system circuit. CONCLUSIONS: Naringin exhibits an in vivo prokinetic activity by a preferable local activation of ghrelin receptor. Moreover, we propose that naringin could play a role as a leading compound for the development of ghrelin receptor-based prokinetic agents.


Assuntos
Flavanonas/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Receptores de Grelina/metabolismo , Animais , Flavanonas/sangue , Frutas , Absorção Intestinal/efeitos dos fármacos , Masculino , Extratos Vegetais/farmacologia , Poncirus , Ratos , Ratos Sprague-Dawley
17.
Drug Dev Ind Pharm ; 39(10): 1515-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22934579

RESUMO

The Biopharmaceutics Classification System (BCS) was developed to facilitate estimation of the in vivo pharmacokinetic performance of drugs from human intestinal permeability and solubility. However, the measurement of human in vivo intestinal permeability, unlike that of solubility, is problematic and inefficient. Thus, rat in vitro intestinal permeability results obtained via the Ussing chamber technique are often used instead. However, these data could be unreliable due to difficulty in maintaining the viability of the dissected intestinal membrane in the Ussing chamber. Therefore, a more efficient method to obtain a reliable in vitro permeability is mandatory. Here, we propose a new approach by introducing a novel factor called the permeability ratio (PR). Basically, PR is a rat in vitro intestinal permeability obtained from the Ussing chamber, which is then corrected by the permeability of lucifer yellow, a paracellular permeability marker. To prove the validity of the method, 12 model drugs representing different BCS classes were tested, and the correlation with human in vivo intestinal permeability was high. More importantly, the new method perfectly classified all 12 model drugs. The results indicate that PR is a reliable factor with high correlation to human in vivo intestinal permeability, which can further be used to accurately predict the BCS classification.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Absorção Intestinal , Jejuno/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Algoritmos , Animais , Humanos , Técnicas In Vitro , Masculino , Permeabilidade , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Preparações Farmacêuticas/classificação , Farmacocinética , Ratos , Ratos Sprague-Dawley , Solubilidade
18.
Integr Med Res ; 12(1): 100916, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36632132

RESUMO

Background: Previous studies have found that Korean red ginseng extract (KRG) has antipruritic effects, which can be attributed to the presence of Rg3, one of the most potent ginsenosides. Therefore, Rg3-enriched KRG extract (Rg3EKRG) is anticipated to have enhanced antipruritic effects. The present study was conducted to examine the effects of Rg3EKRG in acute chloroquine (CQ)-induced and chronic dry skin pruritus. Methods: Calcium imaging technique was used in HE293T cells expressing MrgprA3 and TRPA1 ("MrgprA3/TRPA1") and in primary cultures of mouse dorsal root ganglia (DRG) neurons. Mouse scratching behavior tests were performed on dry skin models. To verify the altered expression of itch-related genes, real-time RNA sequencing analysis and PCR were performed on DRG sections obtained from dry skin models. Results: Rg3EKRG suppressed CQ-induced intracellular calcium changes to a greater degree than KRG. Rg3EKRG dose-dependently inhibited CQ-induced responses in MrgprA3/TRPA1 cells. Rg3EKRG likely targeted MrgprA3 rather than TRPA1 to exert its inhibitory effect. Further, Rg3EKRG strongly inhibited the scratching behavior in mice induced by acute CQ injection. Importantly, DRG neurons obtained from dry skin mice models showed increased mRNA levels of MrgprA3, and treatment with Rg3EKRG alleviated chronic dry skin conditions and suppressed spontaneous scratching behaviors. Conclusion: The results of the present study imply that Rg3EKRG has a stronger antipruritic effect than KRG, inhibiting both acute CQ-induced and chronic dry skin pruritus in an MrgprA3-dependent manner. Therefore, Rg3EKRG is a potential antipruritic agent that can suppress acute and chronic itching at the peripheral sensory neuronal level.

19.
Life Sci ; 325: 121786, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201698

RESUMO

AIMS: Protease-activated receptor 2 (PAR2), a type of G protein-coupled receptor (GPCR), plays a significant role in pathophysiological conditions such as inflammation. A synthetic peptide SLIGRL-NH2 (SLIGRL) can activate PAR2, while FSLLRY-NH2 (FSLLRY) is an antagonist. A previous study showed that SLIGRL activates both PAR2 and mas-related G protein-coupled receptor C11 (MrgprC11), a different type of GPCR expressed in sensory neurons. However, the impact of FSLLRY on MrgprC11 and its human ortholog MRGPRX1 was not verified. Hence, the present study aims to verify the effect of FSLLRY on MrgprC11 and MRGPRX1. METHODS: The calcium imaging technique was applied to determine the effect of FSLLRY in HEK293T cells expressing MrgprC11/MRGPRX1 or dorsal root ganglia (DRG) neurons. Scratching behavior was also investigated in wild-type and PAR2 knockout mice after injecting FSLLRY. KEY FINDINGS: It was surprisingly discovered that FSLLRY specifically activates MrgprC11 in a dose-dependent manner, but not other MRGPR subtypes. Furthermore, FSLLRY also moderately activated MRGPRX1. FSLLRY stimulates downstream pathways including Gαq/11, phospholipase C, IP3 receptor, and TRPC ion channels to evoke an increase in the intracellular calcium levels. The molecular docking analysis predicted that FSLLRY interacts with the orthosteric binding pocket of MrgprC11 and MRGPRX1. Finally, FSLLRY activated primary cultures of mouse sensory neurons, and induced scratching behaviors in mice. SIGNIFICANCE: The present study has revealed that FSLLRY is capable of triggering itch sensation through activation of MrgprC11. This finding highlights the importance of considering the unexpected activation of MRGPRs in future therapeutic approaches aimed at the inhibition of PAR2.


Assuntos
Cálcio , Receptor PAR-2 , Animais , Humanos , Camundongos , Cálcio/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo
20.
Pharm Res ; 29(3): 795-805, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21971829

RESUMO

PURPOSE: To evaluate the usefulness of hematoporphyrin (HP)-modification of the surface of doxorubicin (DOX)-loaded bovine serum albumin (BSA) nanoparticles (NPs) in the liver cancer-selective delivery of DOX. METHODS: HP-modified NPs (HP-NPs) were prepared by conjugation of amino groups on the surface of NPs with HP, a ligand for low density lipoprotein (LDL) receptors on the hepatoma cells. In vitro cellular accumulation of DOX, in vivo biodistribution of DOX, safety, and anti-tumor efficacy were evaluated for HP-NPs. RESULTS: Cytotoxicity and accumulation of DOX were in the order of HP-NPs>NPs>solution form (SOL). Cellular uptake from HP-NPs was proportional to the expression level of LDL receptors on the cells, indicating possible involvement of LDL receptor-mediated endocytosis (RME) in uptake. The "merit index," an AUC ratio of DOX in liver (target organ) to DOX in heart (major side effect organ) following iv administration of HP-NPs to hepatoma rats, was 132.5 and 4 times greater compared to SOL and NPs, respectively. The greatest suppression of body weight decrease and tumor size increase was observed for iv-administered HP-NPs in tumor-bearing mice. CONCLUSIONS: HP modification appears to be useful in selective delivery of NP-loaded DOX to tumors.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Hematoporfirinas/química , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Soroalbumina Bovina/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Bovinos , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA