Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(19): 10238-10260, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37650633

RESUMO

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.


Assuntos
Fusarium , Histonas , Ferro , Cromatina , Histonas/genética , Histonas/metabolismo , Ferro/metabolismo , Nucleossomos , Sideróforos/genética , Fusarium/metabolismo
2.
Anal Bioanal Chem ; 416(18): 4029-4038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38829382

RESUMO

In this study, a molecular beacon (MB) was designed for colorimetric loop-mediated isothermal amplification (cLAMP). The length of complementary bases on the MB, guanine and cytosine content (GC content), and hybridization sites of complementary bases were investigated as key factors affecting the design of the MB. We designed MBs consisting of 10, 15, and 20 complementary bases located at both ends of the HRPzyme. In the case of the long dumbbell DNA structure amplified from the hlyA gene of Listeria monocytogenes, possessing a flat region (F1c-B1) of 61 base pairs (bp), an MB was designed to intercalate into the flat region between the F1c and B1 regions of the LAMP amplicons. In the case of the short dumbbell DNA structure amplified from the bcfD gene of Salmonella species possessing a flat region (F1c-B1) length of 6 bp, another MB was designed to intercalate into the LoopF or LoopB regions of the LAMP amplicons. The results revealed that the hybridization site of the MB on the LAMP amplicons was not crucial in designing the MB, but the GC content was an important factor. The highest hybridization efficiencies for LAMP amplicons were obtained from hlyA gene-specific and bcfD gene-specific MBs containing 20- and 15-base complementary sequences, respectively, which exhibited the highest GC content. Therefore, designing MBs with a high GC content is an effective solution to overcome the low hybridization efficiency of cLAMP assays. The results obtained can be used as primary data for designing MBs to improve cLAMP accessibility.


Assuntos
Colorimetria , Listeria monocytogenes , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Colorimetria/métodos , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/análise , Salmonella/genética , Salmonella/isolamento & purificação , Hibridização de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular
3.
Appl Microbiol Biotechnol ; 108(1): 228, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386129

RESUMO

Fusarium verticillioides is one of the most important fungal pathogens causing maize ear and stalk rots, thereby undermining global food security. Infected seeds are usually unhealthy for consumption due to contamination with fumonisin B1 (FB1) mycotoxin produced by the fungus as a virulence factor. Unveiling the molecular factors that determine fungal development and pathogenesis will help in the control and management of the diseases. Kex2 is a kexin-like Golgi-resident proprotein convertase that is involved in the activation of some important proproteins. Herein, we identified and functionally characterized FvKex2 in relation to F. verticillioides development and virulence by bioinformatics and functional genomics approaches. We found that FvKex2 is required for the fungal normal vegetative growth, because the growth of the ∆Fvkex2 mutant was significantly reduced on culture media compared to the wild-type and complemented strains. The mutant also produced very few conidia with morphologically abnormal shapes when compared with those from the wild type. However, the kexin-like protein was dispensable for the male role in sexual reproduction in F. verticillioides. In contrast, pathogenicity was nearly abolished on wounded maize stalks and sugarcane leaves in the absence of FvKEX2 gene, suggesting an essential role of Fvkex2 in the virulence of F. verticillioides. Furthermore, high-performance liquid chromatography analysis revealed that the ∆Fvkex2 mutant produced a significantly lower level of FB1 mycotoxin compared to the wild-type and complemented strains, consistent with the loss of virulence observed in the mutant. Taken together, our results indicate that FvKex2 is critical for vegetative growth, FB1 biosynthesis, and virulence, but dispensable for sexual reproduction in F. verticillioides. The study presents the kexin-like protein as a potential drug target for the management of the devastating maize ear and stalk rot diseases. Further studies should aim at uncovering the link between FvKex2 activity and FB1 biosynthesis genes. KEY POINTS: •The kexin-like protein FvKex2 contributes significantly to the vegetative growth of Fusarium verticillioides. •The conserved protein is required for fungal conidiation and conidial morphology, but dispensable for sexual reproduction. •Deletion of FvKEX2 greatly attenuates the virulence and mycotoxin production potential of F. verticillioides.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Masculino , Humanos , Micotoxinas/genética , Virulência
4.
Anal Bioanal Chem ; 415(20): 4973-4984, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37365333

RESUMO

Contamination by Escherichia coli O157:H7 is considered a threat in the livestock and food industries. Therefore, it is necessary to develop methods for the convenient and rapid detection of Shiga-toxin-producing E. coli O157:H7. This study aimed to develop a colorimetric loop-mediated isothermal amplification (cLAMP) assay using a molecular beacon to rapidly detect E. coli O157:H7. Primers and a molecular beacon were designed for targeting the Shiga-toxin-producing virulence genes (stx1 and stx2) as molecular markers. Additionally, Bst polymerase concentration and amplification conditions for bacterial detection were optimized. The sensitivity and specificity of the assay were also investigated and validated on artificially tainted (100-104 CFU/g) Korean beef samples. The cLAMP assay could detect 1 × 101 CFU/g at 65 °C for both genes, and the assay was confirmed to be specific for E. coli O157:H7. The cLAMP takes about an hour and does not require expensive devices (e.g., thermal cycler and detector). Hence, the cLAMP assay proposed herein can be used in the meat industry as a fast and simple way to detect E. coli O157:H7.


Assuntos
Escherichia coli O157 , Animais , Bovinos , Escherichia coli O157/genética , Colorimetria , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Microbiologia de Alimentos
5.
Anal Chem ; 94(27): 9627-9635, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762898

RESUMO

In this study, a homogeneous one-step immunoassay based on switching peptides is presented for the detection of influenza viruses A and B (Inf-A and Inf-B, respectively). The one-step immunoassay represents an immunoassay method that does not involve any washing steps, only treatment of the sample. In this method, fluorescence-labeled switching peptides quantitatively dissociate from the antigen-binding site of immunoglobulin G (IgG). In particular, the one-step immunoassay based on soluble detection antibodies with switching peptides is called a homogeneous one-step immunoassay. The immunoassay developed uses switching peptides labeled with two types of fluorescence dyes (FAM and TAMRA) and detection antibodies labeled with two types of fluorescence quenchers (TQ2 for FAM and TQ3 for TAMRA). The optimal switching peptides for the detection of Inf-A and Inf-B have been selected as L1-peptide and H2-peptide. The interactions between the four kinds of switching peptides and IgG have been analyzed using computational docking simulation and SPR biosensor. The location of labeling for the fluorescence quenchers has been determined based on the distance between the fluorescence dyes of the switching peptides and the fluorescence quenchers, calculated on the basis of the efficiency of fluorescence quenching, using the Förster equation. To demonstrate the feasibility of the one-step immunoassay, binding constants (KD) have been calculated for detection antibodies against Inf-A and Inf-B with target antigens (Inf-A and Inf-B) and switching peptides (L1- and H2-peptides), using an isotherm model. The immunoassay has been demonstrated to be feasible using antigens as well as real samples of Inf-A and Inf-B with a critical cycle number (Ct). The immunoassay has also been compared to other commercially available rapid test kits for Inf-A and Inf-B and found to be far more sensitive for detection of Inf-A and Inf-B over the entire detection range.


Assuntos
Orthomyxoviridae , Antígenos , Corantes Fluorescentes/química , Imunoensaio/métodos , Imunoglobulina G , Peptídeos/química
6.
Anal Bioanal Chem ; 414(23): 6723-6733, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35931785

RESUMO

Noroviruses (NoVs) are the most common causes of epidemic gastroenteritis, responsible for at least 50% of all gastroenteritis outbreaks worldwide and significant causes of foodborne illness. In the USA, approximately 21 million illnesses attributable to NoVs have annually occurred. Therefore, there is a great demand to develop a rapid, low-cost, and accurate detection method for NoVs. This study first reported colorimetric helicase-dependent amplification (HDA) methods based on specific primers integrated with HRPzyme for the rapid and sensitive detection of NoV GI and GII. The colorimetric HDA methods exhibited a detection limit of 10 copies mL-1 of each NoV GI and GII and were confirmed to be specific to each NoV GI and GII. The period required to complete the HDA method was 2 h, including a step of RNA extraction and cDNA synthesis without expensive instruments such as a thermal cycler and detector. The cutoff value of the method for the oyster artificially inoculated with a known amount of NoV was all 102 copies g-1 for NoV GI and GII. Therefore, the HDA method developed in this study can be useful tool for the on-site detection of NoVs in food samples.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/epidemiologia , Colorimetria , Primers do DNA/genética , Gastroenterite/epidemiologia , Genótipo , Humanos , Norovirus/genética , Filogenia , RNA Viral/genética
7.
Mol Plant Microbe Interact ; 34(10): 1157-1166, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34165327

RESUMO

Seed maceration and contamination with mycotoxin fumonisin inflicted by Fusarium verticillioides is a major disease concern for maize producers worldwide. Meta-analyses of quantitative trait loci for Fusarium ear rot resistance uncovered several ethylene (ET) biosynthesis and signaling genes within them, implicating ET in maize interactions with F. verticillioides. We tested this hypothesis using maize knockout mutants of the 1-aminocyclopropane-1-carboxylate (ACC) synthases ZmACS2 and ZmACS6. Infected wild-type seed emitted five-fold higher ET levels compared with controls, whereas ET was abolished in the acs2 and acs6 single and double mutants. The mutants supported reduced fungal biomass, conidia, and fumonisin content. Normal susceptibility was restored in the acs6 mutant with exogenous treatment of ET precursor ACC. Subsequently, we showed that fungal G-protein signaling is required for virulence via induction of maize-produced ET. F. verticillioides Gß subunit and two regulators of G-protein signaling mutants displayed reduced seed colonization and decreased ET levels. These defects were rescued by exogenous application of ACC. We concluded that pathogen-induced ET facilitates F. verticillioides colonization of seed, and, in turn, host ET production is manipulated via G-protein signaling of F. verticillioides to facilitate pathogenesis.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fumonisinas , Fusarium , Etilenos , Proteínas de Ligação ao GTP , Virulência , Zea mays
8.
Appl Environ Microbiol ; 87(17): e0308820, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34132587

RESUMO

Hyphal polarized growth in filamentous fungi requires tip-directed secretion, while additional evidence suggests that fungal exocytosis for the hydrolytic enzyme secretion can occur at other sites in hyphae, including the septum. In this study, we analyzed the role of the exocyst complex involved in the secretion in the banana wilt fungal pathogen Fusarium odoratissimum. All eight exocyst components in F. odoratissimum not only localized to the tips ahead of the Spitzenkörper in growing hyphae but also localized to the outer edges of septa in mature hyphae. To further analyze the exocyst in F. odoratissimum, we attempted single gene deletion for all the genes encoding the eight exocyst components and only succeeded in constructing the gene deletion mutants for exo70 and sec5; we suspect that the other 6 exocyst components are encoded by essential genes. Deletion of exo70 or sec5 led to defects in vegetative growth, conidiation, and pathogenicity in F. odoratissimum. Notably, the deletion of exo70 resulted in decreased activities for endoglucosidase, filter paper enzymes, and amylase, while the loss of sec5 only led to a slight reduction in amylase activity. Septum-localized α-amylase (AmyB) was identified as the marker for septum-directed secretion, and we found that Exo70 is essential for the localization of AmyB to septa. Meanwhile the loss of Sec5 did not affect AmyB localization to septa but led to a higher accumulation of AmyB in cytoplasm. This suggested that while Exo70 and Sec5 both take part in the septum-directed secretion, the two play different roles in this process. IMPORTANCE The exocyst complex is a multisubunit tethering complex (MTC) for secretory vesicles at the plasma membrane and contains eight subunits, Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84. While the exocyst complex is well defined in eukaryotes from yeast (Saccharomyces cerevisiae) to humans, the exocyst components in filamentous fungi show different localization patterns in the apical tips of hyphae, which suggests that filamentous fungi have evolved divergent strategies to regulate endomembrane trafficking. In this study, we demonstrated that the exocyst components in Fusarium odoratissimum are localized not only to the tips of growing hyphae but also to the outer edge of the septa in mature hyphae, suggesting that the exocyst complex plays a role in the regulation of septum-directed protein secretion in F. odoratissimum. We further found that Exo70 and Sec5 are required for the septum-directed secretion of α-amylase in F. odoratissimum but with different influences.


Assuntos
Exocitose , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Musa/microbiologia , Doenças das Plantas/microbiologia , Vesículas Secretórias/enzimologia , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/metabolismo , Hifas/enzimologia , Hifas/genética , Hifas/metabolismo , Transporte Proteico , Via Secretória , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo
9.
Curr Genet ; 65(3): 773-783, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30631890

RESUMO

The soil-borne, asexual fungus Fusarium oxysporum f.sp. lycopersici (Fol) is a causal agent of tomato wilt disease. The infection process of Fol comprises root recognition, adhesion, penetration, colonization of the root cortex and hyphal proliferation within the xylem vessels, which are under the regulation of virulence-involved transcription factors (TFs). In this study, we identified a gene, designated FolCZF1, which encodes a C2H2 TF in Fol. The homologs of FolCzf1 are also known to affect pathogenicity in F. graminearum and Magnaporthe oryzae on wheat and rice, respectively. We learned that FolCZF1 transcript level is upregulated in conidia and early host infection stage, which led us to hypothesize that FolCzf1 is associated with early host infection in Fol. The FolCZF1 deletion mutant (ΔFolCZF1) exhibited defects in growth rate, conidiation, conidia morphology and a complete loss of virulence on tomato root. Further microscopic observation showed that ΔFolCZF1 can penetrate the root but the primary infection hypha cannot extend its colonization inside the host tissue, suggesting that FolCzf1 TF plays an important role in early infection. Fusaric acid, a secondary metabolite produced by Fusarium species, is suggested as a virulence factor in many crop diseases. We found that FolCzf1 plays a critical role in fusaric acid production by regulating the expression of fusaric acid biosynthesis genes. In summary, FolCzf1 is required for conidiation, secondary metabolism, and early host infection in Fol, and we propose that homologs of FolCzf1 are required for early parasitic growth in other plant pathogenic filamentous fungi.


Assuntos
Proteínas Fúngicas/metabolismo , Ácido Fusárico/metabolismo , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Esporos Fúngicos/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Raízes de Plantas/microbiologia , Deleção de Sequência , Fatores de Transcrição/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
Appl Microbiol Biotechnol ; 103(14): 5851-5865, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115634

RESUMO

Fusarium graminearum is a prominent fungal pathogen that causes economically important losses by infesting a wide variety of cereal crops. F. graminearum produces both asexual and sexual spores which disseminate and inoculate hosts. Therefore, to better understand the disease cycle and to develop strategies to improve disease management, it is important to further clarify molecular mechanisms of F. graminearum conidiogenesis. In this study, we functionally characterized the FgMed1, a gene encoding an ortholog of a conserved MedA transcription factor known to be a key conidiogenesis regulator in Aspergillus nidulans. The gene deletion mutants ΔFgMed1 produced significantly less conidia, and these were generated from abnormal conidiophores devoid of phialides. Additionally, we observed defective sexual development along with reduced virulence and deoxynivalenol (DON) production in ΔFgMed1. The GFP-tagged FgMed1 protein localized to the nuclei of conidiophores and phialides during early conidiogenesis. Significantly, RNA-Seq analyses showed that a number of the conidiation- and toxin-related genes are differentially expressed in the ΔFgMed1 mutant in early conidiogenesis. These data strongly suggest that FgMed1 involved in regulation of genes associated with early conidiogenesis, DON production, and virulence in F. graminearum.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/genética , Fatores de Transcrição/genética , Tricotecenos/biossíntese , Fusarium/patogenicidade , Deleção de Genes , Mutação , Doenças das Plantas/microbiologia , Análise de Sequência de RNA , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
11.
Analyst ; 143(3): 695-699, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29299545

RESUMO

We have developed a novel strategy for the colorimetric detection of PCR products by utilizing a target-specific primer modified at the 5'-end with an anti-DNAzyme sequence. A single-stranded DNAzyme sequence folds into a G-quadruplex structure with hemin and shows strong peroxidase activity. When the complementary strand binds to the DNAzyme sequence, it blocks the formation of the G-quadraduplex structure and loses its peroxidase activity. In the presence of the target gene, PCR amplification proceeds, and anti-DNAzyme sequence modified primers present in the reaction mixture form a double strand through primer extension. Therefore, it does not block the DNAzyme sequence. Further, a colorimetric signal is generated by the addition of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and H2O2 at the end of the reaction. We have successfully detected a single copy of the HIV type 1 gag gene in buffer and 10 copies in human serum. The strategy developed could be used to detect DNA and RNA in complex biological samples by simple primer designing that includes DNAzyme and a DNA extended primer.


Assuntos
Colorimetria , Primers do DNA/química , DNA Catalítico/química , DNA Complementar/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/análise , Benzotiazóis , Quadruplex G , Hemina , Humanos , Peróxido de Hidrogênio , Ácidos Sulfônicos
12.
New Phytol ; 210(4): 1327-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26875543

RESUMO

In eukaryotes, the retromer is an endosome-localized complex involved in protein retrograde transport. However, the role of such intracellular trafficking events in pathogenic fungal development and pathogenicity remains unclear. The role of the retromer complex in Fusarium graminearum was investigated using cell biological and genetic methods. We observed the retromer core component FgVps35 (Vacuolar Protein Sorting 35) in the cytoplasm as fast-moving puncta. FgVps35-GFP co-localized with both early and late endosomes, and associated with the trans-Golgi network (TGN), suggesting that FgVps35 functions at the donor endosome membrane to mediate TGN trafficking. Disruption of microtubules with nocodazole significantly restricted the transportation of FgVps35-GFP and resulted in severe germination and growth defects. Mutation of FgVPS35 not only mimicked growth defects induced by pharmacological treatment, but also affected conidiation, ascospore formation and pathogenicity. Using yeast two-hybrid assays, we determined the interactions among FgVps35, FgVps26, FgVps29, FgVps17 and FgVps5 which are analogous to the yeast retromer complex components. Deletion of any one of these genes resulted in similar phenotypic defects to those of the ΔFgvps35 mutant and disrupted the stability of the complex. Overall, our results provide the first clear evidence of linkage between the retrograde transport mediated by the retromer complex and virulence in F. graminearum.


Assuntos
Fusarium/genética , Rede trans-Golgi/metabolismo , Endossomos/metabolismo , Fusarium/citologia , Fusarium/metabolismo , Fusarium/patogenicidade , Membranas Intracelulares/metabolismo , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Virulência
13.
Nature ; 464(7287): 367-73, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20237561

RESUMO

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Assuntos
Cromossomos Fúngicos/genética , Fusarium/genética , Fusarium/patogenicidade , Genoma Fúngico/genética , Genômica , Evolução Molecular , Fusarium/classificação , Interações Hospedeiro-Parasita/genética , Família Multigênica/genética , Fenótipo , Filogenia , Proteoma/genética , Análise de Sequência de DNA , Sintenia/genética , Virulência/genética
14.
BMC Bioinformatics ; 16 Suppl 13: S12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26423221

RESUMO

BACKGROUND: Maize, a crop of global significance, is vulnerable to a variety of biotic stresses resulting in economic losses. Fusarium verticillioides (teleomorph Gibberella moniliformis) is one of the key fungal pathogens of maize, causing ear rots and stalk rots. To better understand the genetic mechanisms involved in maize defense as well as F. verticillioides virulence, a systematic investigation of the host-pathogen interaction is needed. The aim of this study was to computationally identify potential maize subnetwork modules associated with its defense response against F. verticillioides. RESULTS: We obtained time-course RNA-seq data from B73 maize inoculated with wild type F. verticillioides and a loss-of-virulence mutant, and subsequently established a computational pipeline for network-based comparative analysis. Specifically, we first analyzed the RNA-seq data by a cointegration-correlation-expression approach, where maize genes were jointly analyzed with known F. verticillioides virulence genes to find candidate maize genes likely associated with the defense mechanism. We predicted maize co-expression networks around the selected maize candidate genes based on partial correlation, and subsequently searched for subnetwork modules that were differentially activated when inoculated with two different fungal strains. Based on our analysis pipeline, we identified four potential maize defense subnetwork modules. Two were directly associated with maize defense response and were associated with significant GO terms such as GO:0009817 (defense response to fungus) and GO:0009620 (response to fungus). The other two predicted modules were indirectly involved in the defense response, where the most significant GO terms associated with these modules were GO:0046914 (transition metal ion binding) and GO:0046686 (response to cadmium ion). CONCLUSION: Through our RNA-seq data analysis, we have shown that a network-based approach can enhance our understanding of the complicated host-pathogen interactions between maize and F. verticillioides by interpreting the transcriptome data in a system-oriented manner. We expect that the proposed analytic pipeline can also be adapted for investigating potential functional modules associated with host defense response in diverse plant-pathogen interactions.


Assuntos
Sequência de Bases/genética , Fusarium/genética , Redes Reguladoras de Genes/genética , Interações Hospedeiro-Patógeno/genética , Zea mays/genética
15.
Environ Microbiol ; 17(8): 2661-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24903410

RESUMO

Saccharomyces cerevisiae protein kinase Sch9 is one of the downstream effectors of the target of rapamycin (TOR) complex 1 and plays multiple roles in stress resistance, longevity and nutrient sensing. However, the functions of Sch9 orthologs in filamentous fungi, particularly in pathogenic species, have not been characterized to date. Here, we investigated biological and genetic functions of FgSch9 in Fusarium graminearum. The FgSCH9 deletion mutant (ΔFgSch9) was defective in aerial hyphal growth, hyphal branching and conidial germination. The mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall-damaging agents, and to rapamycin, while showing increased thermal tolerance. We identified FgMaf1 as one of the FgSch9-interacting proteins that plays an important role in regulating mycotoxin biosynthesis and virulence of F. graminearum. Co-immunoprecipitation and affinity capture-mass spectrometry assays showed that FgSch9 also interacts with FgTor and FgHog1. More importantly, both ΔFgSch9 and FgHog1 null mutant (ΔFgHog1) exhibited increased sensitivity to osmotic and oxidative stresses. This defect was more severe in the FgSch9/FgHog1 double mutant. Taken together, we propose that FgSch9 serves as a mediator of the TOR and high osmolarity glycerol pathways, and regulates vegetative differentiation, multiple stress responses and secondary metabolism in F. graminearum.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Glicerol/metabolismo , Pressão Osmótica , Estresse Oxidativo , Proteínas Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Parede Celular/metabolismo , Fusarium/genética , Fusarium/patogenicidade , Hifas/metabolismo , Micotoxinas/biossíntese , Concentração Osmolar , Metabolismo Secundário , Esporos Fúngicos/metabolismo , Fatores de Transcrição/metabolismo , Virulência
16.
Environ Microbiol ; 17(8): 2735-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25404531

RESUMO

Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating disease of cereal crops worldwide. Recently, a novel fungicide JS399-19 has been launched into the marketplace to manage FHB. It is compelling that JS399-19 shows highly inhibitory activity towards some Fusarium species, but not to other fungi, indicating that it is an environmentally compatible fungicide. To explore the mode of action of this species-specific compound, we conducted a whole-genome transcript profiling together with genetic and biochemical assays, and discovered that JS399-19 targets the myosin I of F. graminearum (FgMyo1). FgMyo1 is essential for F. graminearum growth. A point mutation S217L or E420K in FgMyo1 is responsible for F. graminearum resistance to JS399-19. In addition, transformation of F. graminearum with the myosin I gene of Magnaporthe grisea, the causal agent of rice blast, also led to JS399-19 resistance. JS399-19 strongly inhibits the ATPase activity of the wild-type FgMyo1, but not the mutated FgMyo1(S217L/E420K) . These results provide us a new insight into the design of species-specific antifungal compounds. Furthermore, our strategy can be applied to identify novel drug targets in various pathogenic organisms.


Assuntos
Aminoácidos/farmacologia , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Fusarium/genética , Miosina Tipo I/antagonistas & inibidores , Fenilpropionatos/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Grão Comestível/microbiologia , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Perfilação da Expressão Gênica , Magnaporthe/genética , Miosina Tipo I/genética , Doenças das Plantas/microbiologia
17.
Environ Microbiol ; 16(7): 2023-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24237706

RESUMO

Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth and pathogenicity, and in responses to the environment. In this study, we characterized a MAP kinase kinase FgMkk1 in Fusarium graminearum, the causal agent of wheat head blight. Phenotypic analyses of the FgMKK1 mutant (ΔFgMKK1) showed that FgMkk1 is involved in the regulation of hyphal growth, pigmentation, conidiation, deoxynivalenol biosynthesis and virulence of F. graminearum. ΔFgMKK1 also showed increased sensitivity to cell wall-damaging agents, and to osmotic and oxidative stresses, but exhibited decreased sensitivity to the fungicides iprodione and fludioxonil. In addition, the mutant revealed increased sensitivity to a biocontrol agent, Trichoderma atroviride. Western blot assays revealed that FgMkk1 positively regulates phosphorylation of the MAP kinases Mgv1 and FgOs-2, the key component in the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) signalling pathway respectively. Yeast two-hybrid assay indicated that Mgv1 interacts with a transcription factor FgRlm1. The FgRLM1 mutant (ΔFgRLM1) showed increased sensitivity to cell wall-damaging agents and exhibited decreased virulence. Taken together, our data indicated that FgMkk1 is an upstream component of Mgv1, and regulates vegetative differentiation, multiple stress response and virulence via the CWI and HOG signalling pathways. FgRlm1 may be a downstream component of Mgv1 in the CWI pathway in F. graminearum.


Assuntos
Proteínas Fúngicas/genética , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Hifas/patogenicidade , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Agentes de Controle Biológico , Parede Celular/genética , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fungicidas Industriais , Fusarium/efeitos dos fármacos , Fusarium/genética , Fusarium/metabolismo , Deleção de Genes , Glicerol/metabolismo , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/deficiência , Concentração Osmolar , Pressão Osmótica , Fosforilação , Doenças das Plantas/microbiologia , Transdução de Sinais , Trichoderma/patogenicidade , Triticum/microbiologia , Virulência
18.
Fungal Genet Biol ; 62: 25-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161731

RESUMO

Fusarium verticillioides is an important plant pathogenic fungus causing maize ear and stalk rots. In addition, the fungus is directly associated with fumonisin contamination of food and feeds. Here, we report the functional characterization of Ada1, a putative Cys2-His2 zinc finger transcription factor with a high level of similarity to Aspergillus nidulans FlbC, which is required for the activation of the key regulator of conidiation brlA. ADA1 is predicted to encode a protein with two DNA binding motifs at the C terminus and a putative activator domain at the N terminus region. Deletion of the flbC gene in A. nidulans results in "fluffy" cotton-like colonies, with a defect in transition from vegetative growth to asexual development. In this study we show that Ada1 plays a key role in asexual development in F. verticillioides. Conidia production was significantly reduced in the knockout mutant (Δada1), in which aberrant conidia and conidiophores were also observed. We identified genes that are predicted to be downstream of ADA1, based on A. nidulans conidiation signaling pathway. Among them, the deletion of stuA homologue, FvSTUA, resulted in near absence of conidia production. To further investigate the functional conservation of this transcription factor, we complemented the Δada1 strain with A. nidulans flbC, F. verticillioides ADA1, and chimeric constructs. A. nidulans flbC failed to restore conidia production similar to the wild-type level. However, the Ada1N-terminal domain, which contains a putative activator, fused to A. nidulans FlbC C-terminal motif successfully complemented the Δada1 mutant. Taken together, Ada1 is an important transcriptional regulator of asexual development in F. verticillioides and that the N-terminus domain is critical for proper function of this transcription factor.


Assuntos
Proteínas de Transporte/metabolismo , Fusarium/fisiologia , Proteínas Nucleares/metabolismo , Reprodução Assexuada , Fatores de Transcrição/metabolismo , Proteínas de Transporte/genética , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Proteínas Repressoras , Especificidade da Espécie , Esporos Fúngicos/fisiologia , Fatores de Transcrição/genética
19.
New Phytol ; 203(1): 219-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24684168

RESUMO

The target of rapamycin (TOR) signaling pathway plays critical roles in controlling cell growth in a variety of eukaryotes. However, the contribution of this pathway in regulating virulence of plant pathogenic fungi is unknown. We identified and characterized nine genes encoding components of the TOR pathway in Fusarium graminearum. Biological, genetic and biochemical functions of each component were investigated. The FgFkbp12-rapamycin complex binds to the FgTor kinase. The type 2A phosphatases FgPp2A, FgSit4 and FgPpg1 were found to interact with FgTap42, a downstream component of FgTor. Among these, we determined that FgPp2A is likely to be essential for F. graminearum survival, and FgSit4 and FgPpg1 play important roles in cell wall integrity by positively regulating the phosphorylation of FgMgv1, a key MAP kinase in the cell wall integrity pathway. In addition, the FgPpg1 interacting protein, FgTip41, is involved in regulating mycelial growth and virulence. Notably, FgTip41 does not interact with FgTap42 but with FgPpg1, suggesting the existence of FgTap42:FgPpg1:FgTip41 heterotrimer in F. graminearum, a complex not observed in the yeast model. Collectively, we defined a genetic regulatory framework that elucidates how the TOR pathway regulates virulence and vegetative development in F. graminearum.


Assuntos
Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Virulência , Farmacorresistência Fúngica/genética , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Teste de Complementação Genética , Saccharomyces cerevisiae , Deleção de Sequência , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Tricotecenos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
20.
Anal Bioanal Chem ; 406(3): 859-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24337136

RESUMO

Detection of pathogenic bacteria that pose a great risk to human health requires a rapid, convenient, reliable, and sensitive detection method. In this study, we developed a selective filtration method using monoclonal antibody (MAb)-magnetic nanoparticle (MNP) nanocomposites for the rapid and sensitive colorimetric detection of Salmonella typhimurium. The method contains two key steps: the immunomagnetic separation of the bacteria using MAb-MNP nanocomposites and the filtration of the nanocomposite-bound bacteria. Color signals from the nanocomposites remaining on the membrane were measured, which reflected the amount of bacteria in test samples. Immunomagnetic capture efficiencies of 8 to 90 % for various concentrations of the pathogen (2 × 10(4)-2 × 10(1) cells) were obtained. After optimization of the method, 2 × 10(1) cells of S. typhimurium in pure culture solution was detectable as well as in artificially inoculated vegetables (100 cells/g). The method was confirmed to be highly specific to S. typhimurium without cross-reaction to other pathogenic bacteria and could be concluded within 45 min, yielding results in a shorter or similar time period as compared with recently reported antibody immobilized on magnetic-particle-based methods. This study also demonstrated direct application of MAb-MNP nanocomposites without a dissociation step of bacteria from magnetic beads in colorimetric assays in practice.


Assuntos
Anticorpos Monoclonais/metabolismo , Técnicas de Tipagem Bacteriana/métodos , Colorimetria/métodos , Nanopartículas Metálicas/química , Nanocompostos/química , Salmonella typhimurium/isolamento & purificação , Filtração , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA