Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 57(9): 5486-5498, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29696969

RESUMO

The cobalt complexes CoIIL1(PF6)2 (1; L1 = 2,6-bis[2-(2,2'-bipyridin-6'-yl)ethyl]pyridine) and CoIIL2(PF6)2 (2; L2 = 2,6-bis[2-(4-methoxy-2,2'-bipyridin-6'-yl)ethyl]pyridine) were synthesized and used for photocatalytic CO2 reduction in acetonitrile. X-ray structures of complexes 1 and 2 reveal distorted trigonal-bipyramidal geometries with all nitrogen atoms of the ligand coordinated to the Co(II) center, in contrast to the common six-coordinate cobalt complexes with pentadentate polypyridine ligands, where a monodentate solvent completes the coordination sphere. Under electrochemical conditions, the catalytic current for CO2 reduction was observed near the Co(I/0) redox couple for both complexes 1 and 2 at E1/2 = -1.77 and -1.85 V versus Ag/AgNO3 (or -1.86 and -1.94 V vs Fc+/0), respectively. Under photochemical conditions with 2 as the catalyst, [Ru(bpy)3]2+ as a photosensitizer, tri- p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor, CO and H2 were produced under visible-light irradiation, despite the endergonic reduction of Co(I) to Co(0) by the photogenerated [Ru(bpy)3]+. However, bulk electrolysis in a wet CH3CN solution resulted in the generation of formate as the major product, indicating the facile production of Co(0) and [Co-H] n+ ( n = 1 and 0) under electrochemical conditions. The one-electron-reduced complex 2 reacts with CO to produce [Co0L2(CO)] with νCO = 1894 cm-1 together with [CoIIL2]2+ through a disproportionation reaction in acetonitrile, based on the spectroscopic and electrochemical data. Electrochemistry and time-resolved UV-vis spectroscopy indicate a slow CO binding rate with the [CoIL2]+ species, consistent with density functional theory calculations with CoL1 complexes, which predict a large structural change from trigonal-bipyramidal to distorted tetragonal geometry. The reduction of CO2 is much slower than the photochemical formation of [Ru(bpy)3]+ because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for the reduction to Co(0) by the photoproduced [Ru(bpy)3]+.

2.
Faraday Discuss ; 198: 301-317, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28280836

RESUMO

We prepared electron-rich derivatives of [Ir(tpy)(ppy)Cl]+ with modification of the bidentate (ppy) or tridentate (tpy) ligands in an attempt to increase the reactivity for CO2 reduction and the ability to transfer hydrides (hydricity). Density functional theory (DFT) calculations reveal that complexes with dimethyl-substituted ppy have similar hydricities to the non-substituted parent complex, and photocatalytic CO2 reduction studies show selective CO formation. Substitution of tpy by bis(benzimidazole)-phenyl or -pyridine (L3 and L4, respectively) induces changes in the physical properties that are much more pronounced than from the addition of methyl groups to ppy. Theoretical data predict [Ir(L3)(ppy)(H)] as the strongest hydride donor among complexes studied in this work, but [Ir(L3)(ppy)(NCCH3)]+ cannot be reduced photochemically because the excited state reduction potential is only 0.52 V due to the negative ground state potential of -1.91 V. The excited state of [Ir(L4)(ppy)(NCCH3)]2+ is the strongest oxidant among complexes studied in this work and the singly-reduced species is formed readily upon photolysis in the presence of tertiary amines. Both [Ir(L3)(ppy)(NCCH3)]+ and [Ir(L4)(ppy)(NCCH3)]2+ exhibit electrocatalytic current for CO2 reduction. While a significantly greater overpotential is needed for the L3 complex, a small amount of formate (5-10%) generation in addition to CO was observed as predicted by the DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA