RESUMO
Recently, a number of reports on the importance of USP35 in cancer have been published. However, very little is known about the exact mechanism by which USP35 activity is regulated. Here, we show the possible regulation of USP35 activity and the structural specificity affecting its function by analyzing various fragments of USP35. Interestingly, the catalytic domain of USP35 alone does not exhibit deubiquitinating activity; in contrast, the C-terminal domain and insertion region in the catalytic domain is required for full USP35 activity. Additionally, through its C-terminal domain, USP35 forms a homodimer that prevents USP35 degradation. CHIP bound to HSP90 interacts with and ubiquitinates USP35. However, when fully functional USP35 undergoes auto-deubiquitination, which attenuates CHIP-mediated ubiquitination. Finally, USP35 dimer is required for deubiquitination of the substrate Aurora B and regulation of faithful mitotic progression. The properties of USP35 identified in this study are a unique homodimer structure, regulation of deubiquitinating activity through this, and utilization of a novel E3 ligase involved in USP35 auto-deubiquitination, which adds another complexity to the regulation of deubiquitinating enzymes.
Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , UbiquitinaçãoRESUMO
The MDM2-p53 pathway is crucial for maintenance of p53 homeostasis. Some ribosomal proteins (RPs) play critical roles in regulating p53 by interacting with MDM2. However, the role and functional mechanism of each RP in MDM2-p53 pathway still remain unknown. In this study, we found that Ribosomal Protein S2 (RPS2) is a new regulator of MDM2-P53 signaling pathway to regulate p53 protein level. Here, we characterized that RPS2 interacts with MDM2 through the RING finger domain of MDM2. RPS2 is ubiquitinated by MDM2 and the ubiquitinated status of RPS2 regulates the stability of p53, which is activated in response to cellular stresses such as DNA damage, oxidative stress, and especially ribosomal stress. In addition, p53 is not induced in RPS2 knockdown even in the ribosomal stressed condition, indicating that RPS2 is essential for the stabilization of p53. Collectively, our data suggest that RPS2 plays a critical role in the regulation of p53 signaling including the ribosomal stress response.
Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células HeLa , Humanos , Domínios Proteicos , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Ribossômicas/genética , Transdução de Sinais , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , UbiquitinaçãoRESUMO
Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.
Assuntos
Enzimas Desubiquitinantes/metabolismo , Processamento de Proteína Pós-Traducional , Catálise , Humanos , Fosforilação , Transporte Proteico , Ubiquitina/metabolismo , UbiquitinaçãoRESUMO
Inhibition of the molecular chaperone heat shock protein 90 (Hsp90) represents a promising approach for cancer treatment. BIIB021 is a highly potent Hsp90 inhibitor with remarkable anticancer activity; however, its clinical application is limited by lack of potency and response. In this study, we aimed to investigate the impact of replacing the hydrophobic moiety of BIIB021, 4-methoxy-3,5-dimethylpyridine, with various five-membered ring structures on the binding to Hsp90. A focused array of N7/N9-substituted purines, featuring aromatic and non-aromatic rings, was designed, considering the size of hydrophobic pocket B in Hsp90 to obtain insights into their binding modes within the ATP binding site of Hsp90 in terms of π-π stacking interactions in pocket B as well as outer α-helix 4 configurations. The target molecules were synthesized and evaluated for their Hsp90α inhibitory activity in cell-free assays. Among the tested compounds, the isoxazole derivatives 6b and 6c, and the sole six-membered derivative 14 showed favorable Hsp90α inhibitory activity, with IC50 values of 1.76 µM, 0.203 µM, and 1.00 µM, respectively. Furthermore, compound 14 elicited promising anticancer activity against MCF-7, SK-BR-3, and HCT116 cell lines. The X-ray structures of compounds 4b, 6b, 6c, 8, and 14 bound to the N-terminal domain of Hsp90 were determined in order to understand the obtained results and to acquire additional structural insights, which might enable further optimization of BIIB021.
Assuntos
Antineoplásicos/síntese química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Adenina/análogos & derivados , Adenina/química , Adenina/farmacologia , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Células HCT116 , Proteínas de Choque Térmico HSP90/química , Humanos , Isoxazóis/química , Células MCF-7 , Camundongos , Ligação Proteica , Piridinas/química , Piridinas/farmacologia , Relação Estrutura-AtividadeRESUMO
Elevated expression of human enhancer filamentation 1 (HEF1; also known as NEDD9 or Cas-L) is an essential stimulus for the metastatic process of various solid tumors. This process requires HEF1 localization to focal adhesions (FAs). Although the association of HEF1 with FAs is considered to play a role in cancer cell migration, the mechanism targeting HEF1 to FAs remains unclear. Moreover, up-regulation of Polo-like kinase 1 (Plk1) positively correlates with human cancer metastasis, yet how Plk1 deregulation promotes metastasis remains elusive. Here, we report that casein kinase 1δ (CK1δ) phosphorylates HEF1 at Ser-780 and Thr-804 and that these phosphorylation events promote a physical interaction between Plk1 and HEF1. We found that this interaction is critical for HEF1 translocation to FAs and for inducing migration of HeLa cells. Plk1-docking phosphoepitopes were mapped/confirmed in HEF1 by various methods, including X-ray crystallography, and mutated for functional analysis in HeLa cells. In summary, our results reveal the role of a phosphorylation-dependent HEF1-Plk1 complex in HEF1 translocation to FAs to induce cell migration. Our findings provide critical mechanistic insights into the HEF1-Plk1 complex-dependent localization of HEF1 to FAs underlying the metastatic process and may therefore contribute to the development of new cancer therapies.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Adesões Focais/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Adesões Focais/genética , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Fosfoproteínas/genética , Fosforilação/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-LikeRESUMO
Monomeric perylene diimide (PDI) small molecules display a high absorption coefficient and crystallinity in solid-state thin films due to strong π-π interactions between the molecules. To take advantage of these exciting properties of PDIs, N,N'-bis(1-ethylpropyl)perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) was mixed with a binary blend of PTB7 and PC71 BM to fabricate an efficient ternary blend, which were in turn used to produce organic photovoltaic (OPV) devices well suited to indoor applications (PTB7=poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), PC71 BM=[6,6]-phenyl-C71 -butyric acid methyl ester). We varied the PC71 BM/EP-PDI weight ratio to investigate the influence of EP-PDI on the optical, electrical, and morphological properties of the PTB7:PC71 BM:EP-PDI ternary blend. Compared with the reference PTB7:PC71 BM binary blend, the ternary blends showed strong optical absorption in the wavelength range in which the spectra of indoor LED lamps show their strongest peaks. The addition of EP-PDI to the binary blend was found to play an important role in altering the morphology of the blend in such a way as to facilitate charge transport in the resulting ternary blend. Apparently, as a result, the optimal PTB7:PC71 BM:EP-PDI-based inverted OPV device exhibited a power conversion efficiency (PCE) of 15.68 %, a fill factor (FF) of 68.5 %, and short-circuit current density (JSC ) of 56.7â µA cm-2 under 500â lx (ca. 0.17â mW cm-2 ) indoor LED light conditions.
RESUMO
TM0800 from Thermotoga maritima is one of the hypothetical proteins with unknown function. The crystal structure determined at 2.3 Å resolution reveals a two domain structure: the N-terminal domain forming a barrel and the C-terminal forming a lid. One FMN is bound between the two domains with the phosphate making intricate hydrogen bonds with protein and three tightly bound water molecules, and the isoalloxazine ring packed against the side chains of Met22 and Met276. The structure is almost identical to that of FabK (enoyl-acyl carrier protein (ACP) reductase, ENR II), a key enzyme in bacterial type II fatty-acid biosynthesis that catalyzes the final step in each elongation cycle; and the enzymatic activity confirms that TM0800 is an ENR. Enzymatic activity was almost completely abolished when the helices connecting the barrel and the lid were deleted. Also, the Met276Ala and Ser280Ala mutants showed a significant reduction in enzymatic activity. The crystal structure of Met276Ala mutant at 1.9 Å resolution showed an absence of FMN suggesting that FMN plays a role in catalysis, and Met276 is important in positioning FMN. TmFabK exists as a dimer in both solution and crystal. Together this study provides molecular basis for the catalytic activity of FabK.
Assuntos
Proteínas de Bactérias/química , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Thermotoga maritima/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Thermotoga maritima/metabolismoRESUMO
A novel series of heat shock protein 90 (Hsp90) inhibitors was identified by X-ray crystal analysis of complex structures at solvent-exposed exit pocket C. The 2-amino-pyrrolo[2,3-d]pyrimidine derivatives, 7-deazapurines substituted with a benzyl moiety at C5, showed potent Hsp90 inhibition and broad-spectrum antiproliferative activity against NCI-60 cancer cell lines. The most potent compound, 6a, inhibited Hsp90 with an IC50 of 36nM and showed a submicromolar mean GI50 value against NCI-60 cell lines. The interaction of 6a at the ATP-binding pocket of Hsp90 was confirmed by X-ray crystallography and Western blot analysis.
Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-AtividadeRESUMO
Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.
RESUMO
We have examined whether the copper reduction slag (CRS) generated after recovering valuable metals from copper slag (CS) by reduction process can be used as supplementary cementitious materials (SCMs). According to the test results, the Cu secondary slag with low Fe, Cu, and heavy metal contents had a suitable oxide composition for using as a SCM. CRS showed better grinding efficiency than that of ground blast furnace slag (GGBS). Ground CRS contributed to the formation of tobermorite under autoclaved curing conditions. The compressive strength of CRS mortar replacing 50 % of OPC generated 93 % of that of the OPC mortar. Based on the results of this study, we found that the CRS has highly appropriate engineering characteristics for using as SCMs for concrete. In addition, it is judged that the method of using secondary slag as a material for precast concrete produced under hydrothermal conditions can greatly contribute to the construction process of buildings by securing mechanical performance.
RESUMO
A diverse population of avian influenza A viruses (AIVs) are maintained in wild birds and ducks yet the zoonotic potential of AIVs in these environmental reservoirs and the host-virus interactions involved in mammalian infection are not well understood. In studies of a group of subtype H1N1 AIVs isolated from migratory wild birds during surveillance in North America, we previously identified eight amino acids in the polymerase genes PB2 and PB1 that were important for the transmissibility of these AIVs in a ferret model of human influenza virus transmission. In this current study we found that PB2 containing amino acids associated with transmissibility at 67, 152, 199, 508, and 649 and PB1 at 298, 642, and 667 were associated with more rapid viral replication kinetics, greater infectivity, more active polymerase complexes and greater kinetics of viral genome replication and transcription. Pathogenicity in the mouse model was also impacted, evident as greater weight loss and lung pathology associated with greater inflammatory lung cytokine expression. Further, these AIVs all contained the avian-type amino acids of PB2-E627, D701, G590, Q591 and T271. Therefore, our study provides novel insights into the role of the AIV polymerase complex in the zoonotic transmission of AIVs in mammals.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Aviária , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Aminoácidos/genética , Interações entre Hospedeiro e Microrganismos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Furões , Vírus da Influenza A/metabolismo , Aves , Nucleotidiltransferases , Replicação Viral/genética , FilogeniaRESUMO
The dysfunction of natural killer (NK) cells, mediated by transforming growth factor ß1 (TGFß1) within the tumor microenvironment, impedes antitumor therapy and contributes to poor clinical outcomes. Our study introduces self-activating chimeric antigen receptor (CAR)-NK cells that block TGFß1 signaling by releasing a specifically designed peptide, P6, which targets mesothelin in pancreatic tumors. P6 originates from the interaction sites between TGFß1 and TGFß receptor 1 and effectively disrupts TGFß1's inhibitory signaling in NK cells. Our analysis demonstrates that P6 treatment interrupts the SMAD2/3 pathway in NK cells, mitigating TGFß1-mediated suppression of NK cell activity, thereby enhancing their metabolic function and cytotoxic response against pancreatic tumors. These CAR-NK cells exhibit potent antitumor capabilities, as evidenced in spheroid cultures with cancer-associated fibroblasts and in vivo mouse models. Our approach marks a substantial advancement in overcoming TGFß1-mediated immune evasion, offering a promising avenue for revolutionizing cancer immunotherapy.
RESUMO
New molecules having the structure of (E)-2-(4-tert-butylbenzylidene) hydrazinecarbothioamide (QNT3-18) or 4-tert-butylphenylthiourea (QNT3-20) was synthesized and presupposed to inhibit melanogenesis through the inhibition of tyrosinase, which is involved in melanin formation. Therefore, we seek to develop these new molecules as skin whitening agents in topical formulations based on preformulation studies. QNT3-18 or QNT3-20 showed a strong single endothermic peak at 159.34°C with 10.79 µm-sized or at 150.69°C with 9.0 µm-sized aggregated particles, respectively. Both QNT3-18 and QNT3-20 did not show cytotoxicity at effective concentration range (0.4 µM) against keratinocyte cells and QNT3-18 was more retained than QNT3-20 in the skin instead of permeating through the skin. QNT3-18 or QNT3-20 was practically insoluble in water; the aqueous solubility was 3.8 ± 0.37 or 130.6 ± 2.52 µg/mL, respectively. Also, the partition coefficient value (log P) corresponding to the quotient between aqueous and octanol concentration of the molecule was 3.9 or 2.6, respectively. The skin retention amount of QNT3-18 was 1.7-fold higher than that of QNT3-20. When the optimal SLN cream (J3 formulation) containing 4 µM QNT3-18 was applied on the backs of hairless rats for 4 days after UV irradiation for 7 days and the skin color was checked by reflectance spectrophotometer, the rat skin treated with SLN cream with QNT3-18 quickly recovered to normal compared to skin treated with SLN cream without QNT3-18. Taken together, this study suggests that topical formulations such as creams including SLNs with QNT3-18 might be appropriate carriers for skin whitening agents.
Assuntos
Monofenol Mono-Oxigenase/antagonistas & inibidores , Preparações Clareadoras de Pele/química , Pigmentação da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Tiossemicarbazonas/química , Administração Cutânea , Animais , Descoberta de Drogas , Masculino , Ratos , Ratos Pelados , Preparações Clareadoras de Pele/farmacologia , Tiossemicarbazonas/farmacologiaRESUMO
USP47 is widely involved in tumor development, metastasis, and other processes while performing a more regulatory role in inflammatory responses, myocardial infarction, and neuronal development. In this study, we investigate the functional and biochemical properties of USP47, whereby depleting USP47 inhibited cancer cell growth in a p53-dependent manner-a phenomenon that enhances during the simultaneous knockdown of USP7. Full-length USP47 shows higher deubiquitinase activity than the catalytic domain. The crystal structures of the catalytic domain, in its free and ubiquitin-bound states, reveal that the misaligned catalytic triads, ultimately, become aligned upon ubiquitin-binding, similar to USP7, thereby becoming ready for catalysis. Yet, the composition and lengths of BL1, BL2, and BL3 of USP47 differ from those for USP7, and they contribute to the observed selectivity. Our study provides molecular details of USP47 regulation, substrate recognition, and the hotspots for drug discovery by targeting USP47.
Assuntos
Transformação Celular Neoplásica , Ubiquitina , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Catálise , Domínio CatalíticoRESUMO
Adoptive cell therapy (ACT) with antigen-specific T cells is a promising treatment approach for solid cancers. Interleukin-2 (IL-2) has been utilized in boosting the efficacy of ACT. However, the clinical applications of IL-2 in combination with ACT is greatly limited by short exposure and high toxicities. Herein, a complex coacervate was designed to intratumorally deliver IL-2 in a sustained manner and protect against proteolysis. The complex coacervate consisted of fucoidan, a specific IL-2 binding glycosaminoglycan, and poly-l-lysine, a cationic counterpart (FPC2). IL-2-laden FPC2 exhibited a preferential bioactivity in ex vivo expansion of CD8+T cells over Treg cells. Additionally, FPC2 was embedded in pH modulating injectable gel (FPC2-IG) to endure the acidic tumor microenvironment. A single intratumoral administration of FPC2-IG-IL-2 increased expansion of tumor-infiltrating cytotoxic lymphocytes and reduced frequencies of myeloid populations. Notably, the activation and persistency of tumor-reactive T cells were observed only in the tumor site, not in the spleen, confirming a localized effect of FPC2-IG-IL-2. The immune-favorable tumor microenvironment induced by FPC2-IG-IL-2 enabled adoptively transferred TCR-engineered T cells to effectively eradicate tumors. FPC2-IG delivery system is a promising strategy for T-cell-based immunotherapies.
RESUMO
BACKGROUND: Recently, increased attention has been given on exosomes as ideal nanocarriers of drugs owing to their intrinsic properties that facilitate the transport of biomolecular cargos. However, large-scale exosome production remains a major challenge in the clinical application of exosome-based drug delivery systems. Considering its biocompatibility and stability, bovine milk is a suitable natural source for large-scale and stable exosome production. Because the active-targeting ability of drug carriers is essential to maximize therapeutic efficacy and minimize side effects, precise membrane functionalization strategies are required to enable tissue-specific delivery of milk exosomes with difficulty in post-isolation modification. METHODS: In this study, the membrane functionalization of a milk exosome platform modified using a simple post-insertion method was examined comprehensively. Exosomes were engineered from bovine milk (mExo) with surface-tunable modifications for the delivery of tumor-targeting doxorubicin (Dox). The surface modification of mExo was achieved through the hydrophobic insertion of folate (FA)-conjugated lipids. RESULTS: We have confirmed the stable integration of functionalized PE-lipid chains into the mExo membrane through an optimized post-insertion technique, thereby effectively enhancing the surface functionality of mExo. Indeed, the results revealed that FA-modified mExo (mExo-FA) improved cellular uptake in cancer cells via FA receptor (FR)-mediated endocytosis. The designed mExo-FA selectively delivered Dox to FR-positive tumor cells and triggered notable tumor cell death, as confirmed by in vitro and in vivo analyses. CONCLUSIONS: This simple and easy method for post-isolation modification of the exosomal surface may be used to develop milk-exosome-based drug delivery systems.
RESUMO
Ubiquitin-fold modifier 1 (Ufm1)-specific protease 2 (UfSP2) is a cysteine protease that is responsible for the release of Ufm1 from Ufm1-conjugated cellular proteins, as well as for the generation of mature Ufm1 from its precursor. The 2.6 Å resolution crystal structure of mouse UfSP2 reveals that it is composed of two domains. The C-terminal catalytic domain is similar to UfSP1 with Cys(294), Asp(418), His(420), Tyr(282), and a regulatory loop participating in catalysis. The novel N-terminal domain shows a unique structure and plays a role in the recognition of its cellular substrate C20orf116 and thus in the recruitment of UfSP2 to the endoplasmic reticulum, where C20orf116 predominantly localizes. Mutagenesis studies were carried out to provide the structural basis for understanding the loss of catalytic activity observed in a recently identified UfSP2 mutation that is associated with an autosomal dominant form of hip dysplasia.
Assuntos
Cisteína Endopeptidases/química , Proteínas , Animais , Catálise , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Luxação Congênita de Quadril/enzimologia , Luxação Congênita de Quadril/genética , Humanos , Camundongos , Estrutura Terciária de ProteínaRESUMO
Gemcitabine microparticles were prepared using chitosan, polyethylene oxide or carbopol as the mucoadhesive polymer and eudragit L100-55 as the enteric polymer by a double emulsion method. The particle size and zeta potential changed from 1338.3 ± 254.1 nm to 2459.4 ± 103.6 nm and -5.16 ± 1.62 mV to 2.84 ± 0.65 mV, respectively, with increasing chitosan to gemcitabine weight ratio from 0.25 to 1. The gemcitabine-loaded microparticles without mucoadhesive polymer (F50) showed the particle size and zeta potential of 671.3 ± 58.3 nm and - 16.7 ± 1.82 mV, respectively. The cellular uptake of gemcitabine into Caco-2 cells from gemcitabine-loaded microparticles with chitosan increased with increasing incubation time in Caco-2 cells compared to that of gemcitabine-loaded microparticles with polyethylene oxide or carbopol, suggesting that chitosan might be the optimal mucoadhesive polymer. Gemcitabine microparticles will be tested to identify whether the oral absorption could be increased in the future.
Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Quitosana/química , Desoxicitidina/análogos & derivados , Portadores de Fármacos/química , Polietilenoglicóis/química , Polivinil/química , Resinas Acrílicas/química , Administração Oral , Antimetabólitos Antineoplásicos/farmacocinética , Células CACO-2 , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacocinética , Humanos , Microesferas , Tamanho da Partícula , GencitabinaRESUMO
Fas-associated factor 1 (FAF1) is a scaffolding protein that plays multiple functions, and dysregulation of FAF1 is associated with many types of diseases such as cancers. FAF1 contains multiple ubiquitin-related domains (UBA, UBL1, UBL2, UAS, and UBX), each domain interacting with a specific partner. In particular, the interaction of UBL1 with heat shock protein 70 (Hsp70) is associated with tumor formation, although the molecular understanding remains unknown. In this study, the structural analysis revealed that His160 of FAF1 is important for its interaction with Hsp70. The association of Hsp70 with FAF1 is required for the interaction with IQGAP1. FAF1 negatively regulates RhoA activation by FAF1-Hsp70 complex formation, which then interacts with IQGAP1. These steps play a key role in maintaining the stability of cell-to-cell junction. We conclude that FAF1 plays a critical role in the structure and function of adherens junction during tissue homeostasis and morphogenesis by suppressing RhoA activation, which induces the activation of Rho-associated protein kinase, phosphorylation of myosin light chain, formation of actin stress fiber, and disruption of adherens junction. In addition, depletion of FAF1 increased collective invasion in a 3D spheroid cell culture. These results provide insight into how the FAF1-Hsp70 complex acts as a novel regulator of the adherens junction integrity. The complex can be a potential therapeutic target to inhibit tumorigenesis and metastasis.
Assuntos
Proteínas de Choque Térmico HSP70 , Neoplasias , Humanos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Ubiquitina/metabolismo , Neoplasias/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
The larvicidal activity of 11 Myrtaceae essential oils and their constituents was evaluated against Aedes aegypti L. Of the 11, Melaleuca linariifolia Sm., Melaleuca dissitiflora F. Muell., Melaleuca quinquenervia (Cav.) S. T. Blake, and Eucalyptus globulus Labill oils at 0.1 mg/ml exhibited > or = 80% larval mortality. At this same concentration, the individual constituents tested, allyl isothiocyanate, alpha-terpinene, p-cymene, (+)-limonene, (-)-limonene, gamma-terpinene, and (E)-nerolidol, resulted in > or = 95% mortality. We also tested the acute toxicity of these four active oils earlier mentioned and their constituents against Daphnia magna Straus. M. linariifolia and allyl isothiocyanate was the most toxic to D. magna. Twodays after treatment, residues of M. dissitiflora, M. linariifolia, M. quinquenervia, and E. globulus oils in water were 55.4, 46.6, 32.4, and 14.8%, respectively. Less than 10% of allyl isothiocyanate, alpha-terpinene, p-cymene, (-)-limonene, (+)-limonene, and gamma-terpinene was detected in the water at 2 d after treatment. Our results indicated that oils and their constituents could easily volatilize in water within a few days after application, thus minimizing their effect on the aqueous ecosystem. Therefore, Myrtaceae essential oils and their constituents could be developed as control agents against mosquito larvae.